Skip to main content

Cancer Stem Cells as a Seed for Cancer Metastasis

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies

Abstract

Cancer is one of the leading causes of death worldwide. Recent report from the World Health Organization suggested that, globally, one in six deaths is owing to cancer. In 2018, it was accountable for nearly 9.6 million deaths, and it is expected to be 14.6 million by the year 2035. The worldwide burden of cancer increase is due to aging and growth of population. In addition, cancer-associated lifestyle choices like smoking, sedentary habits and westernized diets increases the risk. Metastasis is complex and multistep process that results in the spread of cancerous cells from the primary site of the tumor to the surrounding tissues and to distant organs. Metastatic cancer is the primary cause of cancer morbidity and mortality. Several studies suggest that tumor has heterogeneous cell population and have numerically less cancer stem cell (CSC) population with self-renewal characteristics. CSCs are shown to drive tumor initiation, progression, metastasis, recurrence, and resistance. In addition, acquisition of epithelial-mesenchymal transition, expression of aberrant RNA-binding proteins, dysregulated microRNA expression, and increase in intercellular transfer of molecules via exosome cargo have been correlated with tumor progression, invasion, metastasis, poor survival, and an increased risk of cancer recurrence. Given the tumor initiating capacity, resistance, migratory potential and invasiveness, CSCs are the seeds of metastasis. This review article attempts to provide the details of the critical importance of CSCs on metastatic process and to offer a basis for the investigation of novel targets to curtail this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazer LM, Sadhasivam B, Palaniyandi K, Muthuswamy T, Ramachandran I, Balakrishnan A, Pathak S, Narayan S, Ramalingam S (2018) Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol 107:1988–1998

    Article  CAS  Google Scholar 

  2. Nguyen LV, Vanner R, Dirks P et al (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133

    Article  CAS  PubMed  Google Scholar 

  3. Mashouri L, Yousefi H, Aref AR, Mohammad Ahadi A, Molaei F, Alahari SK (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pang R, Law WL, Chu AC et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6(6):603–615

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Wei Y, Hummel M et al (2011) Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One 6(1):e16466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morel AP, Lièvre M, Thomas C et al (2008) Generation of breast cancer stem cells through epithelialmesenchymal transition. PLoS One 3(8):e2888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59(1):168–179

    Article  CAS  PubMed  Google Scholar 

  9. Kim WT, Ryu CJ (2017 Jun) Cancer stem cell surface markers on normal stem cells. BMB reports. 50(6):285

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang R, Rofstad EK (2017) Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8(21):35351

    Article  PubMed  Google Scholar 

  11. Li Y, Lin K, Yang Z et al (2017) Bladder cancer stem cells: clonal origin and therapeutic perspectives. Oncotarget 8(39):66668–66679

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin W, Modiano JF, Ito D (2017) Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells. J Vet Sci 18(1):101–104

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan ZX, Mo J, Zhao G, Shu G, Fu HL, Zhao W (2016) Targeting strategies for renal cell carcinoma: from renal cancer cells to renal cancer stem cells. Front Pharmacol 7:423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Govaere O, Wouters J, Petz M, Vandewynckel YP, Van den Eynde K, Verhulst S, Dollé L, Gremeaux L, Ceulemans A, Nevens F, van Grunsven LA (2016) Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J Hepatol 64(3):609–617

    Article  CAS  PubMed  Google Scholar 

  15. Sun JH, Luo Q, Liu LL, Song GB (2016) Liver cancer stem cell markers: progression and therapeutic implications. World J Gastroenterol 22(13):3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ming XY, Fu L, Zhang LY, Qin YR, Cao TT, Chan KW, Ma S, Xie D, Guan XY (2016) Integrin α7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma. Nat Commun 7(1):1–4

    Article  CAS  Google Scholar 

  17. Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlöw B, Nestor M (2014) Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One 9(4):e94621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dawood S, Austin L, Cristofanilli M (2014) Cancer stem cells: implications for cancer therapy. Oncology 28(12):1101–1107, 1110

    PubMed  Google Scholar 

  19. Guo Z, Hardin H, Lloyd RV (2014) Cancer stem-like cells and thyroid cancer. Endocr Relat Cancer 21(5):T285–T300

    Article  CAS  PubMed  Google Scholar 

  20. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol 61(1):14–25

    Google Scholar 

  21. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29(18):2672–2680

    Article  CAS  PubMed  Google Scholar 

  22. Saikawa Y, Fukuda K, Takahashi T, Nakamura R, Takeuchi H, Kitagawa Y (2010) Gastric carcinogenesis and the cancer stem cell hypothesis. Gastric Cancer 13(1):11–24

    Article  PubMed  Google Scholar 

  23. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  PubMed  Google Scholar 

  24. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    Article  CAS  PubMed  Google Scholar 

  25. Fang D, Leishear K, Nguyen TK, Finko R, Cai K, Fukunaga M, Li L, Brafford PA, Kulp AN, Xu X, Smalley KS (2006) Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells 24(7):1668–1677

    Article  PubMed  Google Scholar 

  26. Yun EJ, Lo UG, Hsieh JT (2016) The evolving landscape of prostate cancer stem cell: therapeutic implications and future challenges. Asian J Urol 3(4):203–210

    Article  PubMed  PubMed Central  Google Scholar 

  27. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  28. García de Herreros A (2014) Epithelial to mesenchymal transition in tumor cells as consequence of phenotypic instability. Front Cell Dev Biol 12(2):71

    Google Scholar 

  29. Kim DH, Xing T, Yang Z, Dudek R, Lu Q, Chen YH (2018) Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med 7(1):1

    Article  CAS  Google Scholar 

  30. Clark DW, Palle K (2016) Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Ann Transl Med 4(24):518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sikandar SS, Kuo AH, Kalisky T, Cai S, Zabala M, Hsieh RW, Lobo NA, Scheeren FA, Sim S, Qian D, Dirbas FM (2017) Role of epithelial to mesenchymal transition associated genes in mammary gland regeneration and breast tumorigenesis. Nat Commun 8(1):1–9

    Article  CAS  Google Scholar 

  32. Bhattacharya R, Mitra T, Ray Chaudhuri S, Roy SS (2018) Mesenchymal splice isoform of CD44 (CD44s) promotes EMT/invasion and imparts stem‐like properties to ovarian cancer cells. J Cell Biochem 119(4):3373–3383

    Article  CAS  PubMed  Google Scholar 

  33. Fan D, Lin X, Zhang F, Zhong W, Hu J, Chen Y, Cai Z, Zou Y, He X, Chen X, Lan P (2018) Micro RNA 26b promotes colorectal cancer metastasis by downregulating phosphatase and tensin homolog and wingless‐type MMTV integration site family member 5A. Cancer Sci 109(2):354–362

    Article  CAS  PubMed  Google Scholar 

  34. Chen DL, Chen LZ, Lu YX, Zhang DS, Zeng ZL, Pan ZZ, Huang P, Wang FH, Li YH, Ju HQ, Xu RH (2017) Long noncoding RNA XIST expedites metastasis and modulates epithelial–mesenchymal transition in colorectal cancer. Cell Death Dis 8(8):e3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hudis CA, Gianni L (2011) Triple-negative breast cancer: an unmet medical need. Oncologist 16(Suppl 1):1–11

    Article  PubMed  Google Scholar 

  36. Carey JP, Karakas C, Bui T, Chen X, Vijayaraghavan S, Zhao Y, Wang J, Mikule K, Litton JK, Hunt KK, Keyomarsi K (2018) Synthetic lethality of PARP inhibitors in combination with MYC blockade is independent of BRCA status in triple-negative breast cancer. Cancer Res 78(3):742–757

    Article  CAS  PubMed  Google Scholar 

  37. Yang M, Li Y, Shen X, Ruan Y, Lu Y, Jin X, Song P, Guo Y, Zhang X, Qu H, Shao Y (2017) CLDN6 promotes chemoresistance through GSTP1 in human breast cancer. J Exp Clin Cancer Res 36(1):1–5

    Article  CAS  Google Scholar 

  38. Jiang P, Chen A, Wu X, Zhou M, ul Haq I, Mariyam Z, Feng Q (2018) NEAT1 acts as an inducer of cancer stem cell‐like phenotypes in NSCLC by inhibiting EGCG‐upregulated CTR1. J Cell Physiol 233(6):4852–4863

    Article  CAS  PubMed  Google Scholar 

  39. Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martín-Pérez J (2017) miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS One 12(11):e0188637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim YJ, Jeong SH, Kim EK, Kim EJ, Cho JH (2017) Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxiredoxin II and reactive oxygen species in pancreatic cancer cells. Oncol Rep 38(6):3632–3638

    CAS  PubMed  Google Scholar 

  41. Giacomelli C, Daniele S, Natali L, Iofrida C, Flamini G, Braca A, Trincavelli ML, Martini C (2017) Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci Rep 7(1):1–7

    Article  CAS  Google Scholar 

  42. Lagunas AM, Wu J, Crowe DL (2017) Telomere DNA damage signaling regulates cancer stem cell evolution, epithelial mesenchymal transition, and metastasis. Oncotarget 8(46):80139

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang HM, Son HS, Cui YH, Youn B, Son B, Kaushik NK, Uddin N, Lee JS, Song JY, Kaushik N, Lee SJ (2017) Phytosphingosine exhibits an anti-epithelial–mesenchymal transition function by the inhibition of EGFR signaling in human breast cancer cells. Oncotarget 8(44):77794

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin Y, Wang Y, Shi Q, Yu Q, Liu C, Feng J, Deng J, Evers BM, Zhou BP, Wu Y (2017) Stabilization of the transcription factors slug and twist by the deubiquitinase dub3 is a key requirement for tumor metastasis. Oncotarget 8(43):75127

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yan X, Liu L, Li H, Qin H, Sun Z (2017) Clinical significance of Fusobacterium nucleatum, epithelial–mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco Targets Ther 10:5031

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, Zhang HQ, Wang WW, Weng B, Zhang Z, Li JS (2018) SOX8 regulates cancer stem‐like properties and cisplatin‐induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β‐catenin pathway. Int J Cancer 142(6):1252–1265

    Article  CAS  PubMed  Google Scholar 

  47. Garg M (2015) Emerging role of microRNAs in cancer stem cells: implications in cancer therapy. World J Stem Cells 7(8):1078

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi RU, Miyazaki H, Ochiya T (2014) The role of microRNAs in the regulation of cancer stem cells. Front Genet 4:295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou L, Liu F, Wang X, Ouyang G (2015) The roles of microRNAs in the regulation of tumor metastasis. Cell Biosci 5(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. El Helou R, Pinna G, Cabaud O, Wicinski J, Bhajun R, Guyon L, Rioualen C, Finetti P, Gros A, Mari B, Barbry P (2017) miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep 18(9):2256–2268

    Article  PubMed  CAS  Google Scholar 

  51. Wang ZM, Du WJ, Piazza GA, Xi Y (2013) MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacol Sin 34(11):1374–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shimono Y, Mukohyama J, Nakamura SI, Minami H (2016) MicroRNA regulation of human breast cancer stem cells. J Clin Med 5(1):2

    Article  CAS  Google Scholar 

  53. Xiao Y, Humphries B, Yang C, Wang Z (2019) MiR-205 dysregulations in breast cancer: the complexity and opportunities. Non-coding RNA 5(4):53

    Article  CAS  PubMed Central  Google Scholar 

  54. Bimonte S, Barbieri A, Leongito M, Palma G, Del Vecchio V, Falco M, Palaia R, Albino V, Piccirillo M, Amore A, Petrillo A (2016) The role of miRNAs in the regulation of pancreatic cancer stem cells. Stem Cells Int 2016:8352684

    PubMed  PubMed Central  Google Scholar 

  55. Hu J, Qiu M, Jiang F, Zhang S, Yang X, Wang J, Xu L, Yin R (2014) MiR-145 regulates cancer stem-like properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells. Tumor Biol 35(9):8953–8961

    Article  CAS  Google Scholar 

  56. Fan X, Chen X, Deng W, Zhong G, Cai Q, Lin T (2013) Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer 13(1):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, Rycaj K, Takata Y, Lin K, Lu Y, Zhong Y (2017) MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun 8(1):1–4

    Article  CAS  Google Scholar 

  58. Bao B, Li Y, Ahmad A, Azmi AS, Bao G, Ali S, Banerjee S, Kong D, H Sarkar F (2012) Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 13(14):1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC, Kao SY, Chang CJ, Chiou SH (2011) Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol 2011:609259

    Article  PubMed  CAS  Google Scholar 

  60. Li XJ, Ren ZJ, Tang JH (2014) MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 5(7):e1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Y, Kim S, Kim IM (2014) Regulation of metastasis by microRNAs in ovarian cancer. Front Oncol 4:143

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71(18):5950–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pencheva N, Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15(6):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y, Goodall GJ (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126(10):2256–2266

    CAS  PubMed  Google Scholar 

  65. Wu M-J, Chen Y-S, Kim MR, Chang C-J (2016) Regulation of epithelial plasticity and cancer stemness via microRNAs. J Mol Genet Med 10:2. ISSN: 1747-0862

    Google Scholar 

  66. Ju SY, Chiou SH, Su Y (2014) Maintenance of the stemness in CD44+ HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Res 12(1):86–100

    Article  CAS  PubMed  Google Scholar 

  67. Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP, Ueno KR, Gaur S, Nicoloso MS, Rossi S, Herschkowitz JI (2013) Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep 3:2687

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang Y, Zhou SY, Yan HZ, Xu DD, Chen HX, Wang XY, Wang X, Liu YT, Zhang L, Wang S, Zhou PJ (2016) miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and Bmi-1. Sci Rep 6(1):1–2

    Article  CAS  Google Scholar 

  69. Yu G, Yao W, Xiao W, Li H, Xu H, Lang B (2014) MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. J Exp Clin Cancer Res 33(1):779

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kumar B, Yadav A, Lang J, Teknos TN, Kumar P (2012) Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One 7(5):e37601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang X, Ai F, Li X, Tian L, Wang X, Shen S, Liu F (2017) MicroRNA‑34a suppresses colorectal cancer metastasis by regulating Notch signaling. Oncol Lett 14(2):2325–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao Y, Luo LH, Li S, Yang C (2014) miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression. Biochem Biophys Res Commun 444(2):230–234

    Article  CAS  PubMed  Google Scholar 

  74. Schubbert S, Jiao J, Ruscetti M, Nakashima J, Wu S, Lei H, Xu Q, Yi W, Zhu H, Wu H (2016) Methods for PTEN in stem cells and cancer stem cells. In: PTEN. Humana Press, New York, pp 233–285

    Chapter  Google Scholar 

  75. Jiang Z, Yin J, Fu W, Mo Y, Pan Y, Dai L, Huang H, Li S, Zhao J (2014) MiRNA 17 family regulates cisplatin-resistant and metastasis by targeting TGFbetaR2 in NSCLC. PLoS One 9(4):e94639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ajani JA, Song S, Hochster HS, Steinberg IB (2015) Cancer stem cells: the promise and the potential. In: Seminars in oncology, vol 42. WB Saunders, pp S3–S17

    Google Scholar 

  77. Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, Ye H, Chen S, Wang J (2012) miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer 107(2):352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gong C, Yang Z, Wu F, Han L, Liu Y, Gong W (2016) miR-17 inhibits ovarian cancer cell peritoneal metastasis by targeting ITGA5 and ITGB1. Oncol Rep 36(4):2177–2183

    Article  CAS  PubMed  Google Scholar 

  79. Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, Leung GK, Lu G, Chan DT, Bian XW, Kung HF (2012) Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287(13):9962–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD, Yang Y, McEnery K, Jethwa K, Gjyshi O, Qiao W (2013) MiR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res 73(13):3913–3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lv XB, Jiao Y, Qing Y, Hu H, Cui X, Lin T, Song E, Yu F (2011) miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chin J Cancer 30(12):821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zhou XU, Qi L, Tong S, Cui YU, Chen J, Huang T, Chen Z, Zu XB (2015) miR-128 downregulation promotes growth and metastasis of bladder cancer cells and involves VEGF-C upregulation. Oncol Lett 10(5):3183–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao X, Wu Y, Lv Z (2015) miR-128 modulates hepatocellular carcinoma by inhibition of ITGA2 and ITGA5 expression. Am J Transl Res 7(9):1564

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun X, Li Y, Yu J, Pei H, Luo P, Zhang J (2015) miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1. Jpn J Clin Oncol 45(5):474–482

    Article  PubMed  Google Scholar 

  85. Zeng H, Zhang Z, Dai X, Chen Y, Ye J, Jin Z (2016) Increased expression of microRNA-199b-5p associates with poor prognosis through promoting cell proliferation, invasion and migration abilities of human osteosarcoma. Pathol Oncol Res 22(2):253–260

    Article  CAS  PubMed  Google Scholar 

  86. Fang C, Zhao Y, Guo B (2013) MiR‐199b‐5p targets HER2 in breast cancer cells. J Cell Biochem 114(7):1457–1463

    Article  CAS  PubMed  Google Scholar 

  87. Zhou SJ, Liu FY, Zhang AH, Liang HF, Wang Y, Ma R, Jiang YH, Sun NF (2017) MicroRNA-199b-5p attenuates TGF-β1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Br J Cancer 117(2):233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Z, Zhang H, Zhang P, Li J, Shan Z, Teng W (2013) Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis. Med Oncol 30(2):577

    Article  PubMed  CAS  Google Scholar 

  89. Zhang J, Qin X, Sun Q, Guo H, Wu X, Xie F, Xu Q, Yan M, Liu J, Han Z, Chen W (2015) Transcriptional control of PAX4-regulated miR-144/451 modulates metastasis by suppressing ADAMs expression. Oncogene 34(25):3283–3295

    Article  CAS  PubMed  Google Scholar 

  90. Zhang F, Huang W, Sheng M, Liu T (2015) MiR-451 inhibits cell growth and invasion by targeting CXCL16 and is associated with prognosis of osteosarcoma patients. Tumor Biol 36(3):2041–2048

    Article  CAS  Google Scholar 

  91. Huang JY, Zhang K, Chen DQ, Chen J, Feng B, Song H, Chen Y, Zhu Z, Lu L, De W, Wang R (2015) MicroRNA-451: epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma. Oncotarget 6(21):18613

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liu G, Xu Z, Hao D (2016) MicroRNA‑451 inhibits neuroblastoma proliferation, invasion and migration by targeting macrophage migration inhibitory factor. Mol Med Rep 13(3):2253–2260

    Article  PubMed  CAS  Google Scholar 

  93. Yin P, Peng R, Peng H, Yao L, Sun Y, Wen L, Wu T, Zhou J, Zhang Z (2015) MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Mol Biotechnol 57(1):1–11

    Article  CAS  PubMed  Google Scholar 

  94. Lei T, Zhu Y, Jiang C, Wang Y, Fu J, Fan Z, Qin H (2016) MicroRNA-320 was downregulated in non-small cell lung cancer and inhibited cell proliferation, migration and invasion by targeting fatty acid synthase. Mol Med Rep 14(2):1255–1262

    Article  CAS  PubMed  Google Scholar 

  95. Shi C, Zhang Z (2017) MicroRNA‑320 suppresses cervical cancer cell viability, migration and invasion via directly targeting FOXM1. Oncol Lett 14(3):3809–3816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3(7):506–528

    Article  CAS  PubMed  Google Scholar 

  97. Denkert C, Koch I, von Keyserlingk N, Noske A, Niesporek S, Dietel M, Weichert W (2006) Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Modern Pathol 19(9):1261–1269

    Article  CAS  Google Scholar 

  98. Hong S (2017) RNA binding protein as an emerging therapeutic target for cancer prevention and treatment. J Cancer Prev 22(4):203

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sureban SM, Ramalingam S, Natarajan G, May R, Subramaniam D, Bishnupuri KS, Morrison AR, Dieckgraefe BK, Brackett DJ, Postier RG, Houchen CW (2008) Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe. Oncogene 27(33):4544–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Venugopal A, Subramaniam D, Balmaceda J, Roy B, Dixon DA, Umar S, Weir SJ, Anant S (2016) RNA binding protein RBM3 increases β‐catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog 55(11):1503–1516

    Article  CAS  PubMed  Google Scholar 

  101. Hou P, Li L, Chen F, Chen Y, Liu H, Li J, Bai J, Zheng J (2018) PTBP3-mediated regulation of ZEB1 mRNA stability promotes epithelial–mesenchymal transition in breast cancer. Cancer Res 78(2):387–398

    Article  CAS  PubMed  Google Scholar 

  102. Mukohyama J, Shimono Y, Minami H, Kakeji Y, Suzuki A (2017) Roles of microRNAs and RNA-binding proteins in the regulation of colorectal cancer stem cells. Cancers 9(10):143

    Article  PubMed Central  CAS  Google Scholar 

  103. Pastò A, Serafin V, Pilotto G, Lago C, Bellio C, Trusolino L, Bertotti A, Hoey T, Plateroti M, Esposito G, Pinazza M (2014) NOTCH3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells. Cancer Res 74(7):2106–2118

    Article  PubMed  CAS  Google Scholar 

  104. Shou Z, Jin X, He X, Zhao Z, Chen Y, Ye M, Yao J (2017) Overexpression of Musashi-1 protein is associated with progression and poor prognosis of gastric cancer. Oncol Lett 13(5):3556–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kudinov AE, Deneka A, Nikonova AS, Beck TN, Ahn YH, Liu X, Martinez CF, Schultz FA, Reynolds S, Yang DH, Cai KQ (2016) Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A 113(25):6955–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Codony-Servat J, Rosell R (2015) Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res 4(6):689

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinotto A, Freschi M, Bachi A (2015) Tenascin-C protects cancer stem–like cells from immune surveillance by arresting T-cell activation. Cancer Res 75(10):2095–2108

    Article  CAS  PubMed  Google Scholar 

  108. Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J, Pollard JW (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ, Picon-Ruiz M, Kim M, Ullmer W, El-Ashry D, Creighton CJ (2015) VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 34(24):3107–3119

    Article  CAS  PubMed  Google Scholar 

  110. Li YL, Zhao H, Ren XB (2016) Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol Med 13(2):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hsu YL, Hung JY, Tsai YM, Tsai EM, Huang MS, Hou MF, Kuo PL (2015) 6-Shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells. J Agric Food Chem 63(6):1730–1738

    Article  CAS  PubMed  Google Scholar 

  112. Xiang ZL, Zeng ZC, Fan J, Wu WZ, He J, Zeng HY, Tang ZY (2011) A clinicopathological model to predict bone metastasis in hepatocellular carcinoma. J Cancer Res Clin Oncol 137(12):1791

    Article  CAS  PubMed  Google Scholar 

  113. Kim SW, Kim HY, Song IC, Jin SA, Lee HJ, Yun HJ, Kim S, Jo DY (2008) Cytoplasmic trapping of CXCR4 in hepatocellular carcinoma cell lines. Cancer Res Treat 40(2):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jeng KS, Jeng CJ, Jeng WJ, Chang CF, Sheen I (2017) Role of CXC chemokine ligand 12/CXC chemokine receptor 4 in the progression of hepatocellular carcinoma. Oncol Lett 14(2):1905–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Geiger P, Mayer B, Wiest I, Schulze S, Jeschke U, Weissenbacher T (2016) Binding of galectin-1 to breast cancer cells MCF7 induces apoptosis and inhibition of proliferation in vitro in a 2D-and 3D-cell culture model. BMC Cancer 16(1):1–9

    Article  CAS  Google Scholar 

  116. Zhou X, Li D, Wang X, Zhang B, Zhu H, Zhao J (2015) Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness. Oncotarget 6(5):3111

    Article  PubMed  Google Scholar 

  117. Kitamura T, Qian B-Z, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Syn N, Wang L, Sethi G et al (2016) Exosome-mediated metastasis: from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 37(7):606–617

    Article  CAS  PubMed  Google Scholar 

  119. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar CM, Nitadori-Hoshino A (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Parfejevs V, Sagini K, Buss A, Sobolevska K, Llorente A, Riekstina U, Abols A (2020) Adult stem cell-derived extracellular vesicles in cancer treatment: opportunities and challenges. Cells 9(5):1171

    Article  PubMed Central  CAS  Google Scholar 

  122. Hannafon BN, Ding WQ (2015) Cancer stem cells and exosome signaling. Stem Cell Invest 2:11

    Google Scholar 

  123. O’Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, McDonnell S, Crown J, Radomski MW, O’Driscoll L (2013) Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 49(8):1845–1859

    Article  PubMed  CAS  Google Scholar 

  124. Lowry MC, Gallagher WM, O’Driscoll L (2015) The role of exosomes in breast cancer. Clin Chem 61(12):1457–1465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SRM Institute of Science and Technology for funding and providing the laboratory facility. We would also like to thank Science and Engineering Research Board (SERB)-EMR/2017/002874, Indian Council of Medical Research (ICMR)-2019-5526/CMB/BMS and Department of Biotechnology (DBT)-BT/PR26189/GET/119/226/2017 for the funding support provided.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lizha Mary, L., Vasantha Kumar, M., Satish, R. (2020). Cancer Stem Cells as a Seed for Cancer Metastasis. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_12

Download citation

Publish with us

Policies and ethics