Skip to main content

Role of Metagenomics in Discovery of Industrially Important Cellulase

  • Chapter
  • First Online:
Industrial Applications of Glycoside Hydrolases
  • 507 Accesses

Abstract

Lignocellulose is considered as one of the most copious biopolymer accessible on this planet. Lignocellulosic hydrolysis which yields sugar and phenolics is a must for fermentation processes and pilot scale production of value added products. Cellulases are the class of enzymes which are mainly produced by fungi and bacteria and help in cellulose hydrolysis by acting on the β-1,4 linkages of cellulosic chains. The microbial cellulases have been found to be used in several industries such as biofuel, food, brewing, textile and laundry. Recently, functional metagenomics have been found to be an important strategy for the discovery of cellulose genes. However, the efficiency of such techniques for enzyme discovery from environmental metagenomes is not sufficient to meet the increasing industrial demands. Scientific and industrial advancements, role of metagenomics and future scenario related to the application of several cellulase pertaining to different industries will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 843:44–856

    Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139

    Google Scholar 

  • Alvarez TM, Paiva JH, Ruiz DM et al (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8:e83635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arja MO (2007) Cellulases in the textile industry. In: Polaina J, MacCabe AP (eds) Industrial enzymes. Springer, Dordrecht, pp 51–63

    Chapter  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Cheema S, Bassas-Galia M, Sarma PM, Lal B, Arias S (2012) Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly (3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain. Bioresour Technol 103:322–328

    Article  CAS  PubMed  Google Scholar 

  • Çinar I (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40:945–949

    Article  CAS  Google Scholar 

  • De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: effect of different enzyme activities and levels. Biochem Eng J 41:149–156

    Article  CAS  Google Scholar 

  • De Vries M, Schöler A, Ertl J, Xu Z, Schloter M (2015) Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments. FEMS Microbiol Eco 91:69

    Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dienes D, Egyházi A, Réczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20:11–21

    Article  CAS  Google Scholar 

  • Duan CJ, Xian L, Zhao GC et al (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256

    Article  CAS  PubMed  Google Scholar 

  • Freier D, Mothershed CP, Wiegel J (1988) Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol 54:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Marine Sci 3:347–371

    Article  Google Scholar 

  • Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97:2423–2431

    Article  CAS  PubMed  Google Scholar 

  • Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M et al (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Jiménez DJ, de Lima Brossi MJ, Schückel J, Kračun SK, Willats WGT, van Elsas JD (2016) Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches. Appl Microbiol Biotechnol 100:10463–10477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorgensen KS (2007) In situ bioremediation. Adv Appl Microbiol 61:285–305

    Article  CAS  PubMed  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–120

    Article  CAS  Google Scholar 

  • Kanafusa-Shinkai S, Wakayama J, Tsukamoto K, Hayashi N, Miyazaki Y, Ohmori H, Tajima K, Yokoyama H (2013) Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium. J Biosci Bioeng 115:64–70

    Article  CAS  PubMed  Google Scholar 

  • Kanokratana P, Eurwilaichitr L, Pootanakit K, Champreda V (2015) Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. J Biosci Bioeng 119:384–391

    Article  CAS  PubMed  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53

    Article  CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047

    Article  PubMed  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133–142

    Article  CAS  Google Scholar 

  • Knapp JS (1985) Biodegradation of cellulose and lignins. Comprehen Biotechnol 4:835

    Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kung L Jr, Kreck EM, Tung RS, Hession AO, Sheperd AC, Cohen MA, Swain HE Leedle JA (1997) Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. J Dairy Sci 80:2045–2051

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Lee C, Oh T, Song JK, Yoon J (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Isak S, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JE, Houghton JNI, Rooks D, Allison HE, McCarthy AJ (2012) The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters. Environ Microbiol 14:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Milala MA, Shugaba A, Gidado A, ENe AC, Wafar JA (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res J Agric Biol Sci 1:325–328

    Google Scholar 

  • Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K (2012) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58:163–176

    Article  CAS  Google Scholar 

  • Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957

    Article  CAS  Google Scholar 

  • Rai P, Majumdar G, Gupta SD, De S (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78:561–568

    Article  CAS  Google Scholar 

  • Ransom-Jones E, McCarthy AJ, Haldenby S, Doonan J, McDonald JE (2017) Lignocellulose-degrading microbial communities in landfill sites represent a repository of unexplored biomass-degrading diversity. mSphere 2:e00300–e00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp P, Beerman (1991) Bacterial cellulases. In: Weimer CH (ed) Biosynthesis and degradation of cellulose. Marcel Dekker, New York, pp 535–595

    Google Scholar 

  • Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6:1858–1867

    Article  CAS  Google Scholar 

  • Schallmey M, Ly A, Wang C et al (2011) Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiol Lett 321:150–156

    Article  CAS  PubMed  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  • Sharada R, Venkateswarlu G, Venkateswar S, AnandRao M (2014) Applications of cellulases—review. Int J Pharm Chem Biol Sci 4:424–437

    CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K. International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  • Sizova MV, Izquierdo JA, Panikov NS, Lynd LR (2011) Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol 77:2282–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornbury M, Sicheri J, Slaine P, Getz LJ, Finlayson-Trick E, Cook J et al (2019) Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. PLoS One 14:e0209221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulose. J Biotechnol 126:26–36

    Article  CAS  PubMed  Google Scholar 

  • Waghunge RR, Rahul MS, Ambalal NS (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agr Res 11:1952–1965

    Google Scholar 

  • Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Jiang X, Xu H, Zhang Y (2018) Metagenomic analysis of cellulose and volatile fatty acids metabolism by microorganisms in cow rumen. BioRxiv 414961

    Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13:413–429

    Google Scholar 

  • Wong MT, Wang W, Couturier M et al (2017) Comparative metagenomics of cellulose- and poplar hydrolysate-degrading microcosms from gut microflora of the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus) after long-term enrichment. Front Microbiol 8:2504

    Article  PubMed  PubMed Central  Google Scholar 

  • World Enzymes (2011) Industry study with forecasts for 2015 & 2020. The Freedonia Group, USA, pp 1–376

    Google Scholar 

  • Yeh Y, Chang SC, Kuo H, Tong C, Yu S, Ho TD (2013) A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene 519:360–366

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chung J, Jiang Q, Sun R, Zhang J, Zhong Y, Ren N (2017) Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Adv 7:40303–40310

    Article  CAS  Google Scholar 

  • Zverlov VV, Schwarz WH (2008) Bacterial cellulose hydrolysis in anaerobic environmental subsystems- Clostridium thermocellum and Clostridium stercorarium, thermophilic plant fiber degraders. Ann NY Acad Sci 1125:298–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

PJ is thankful to Amity University, Kolkata for providing the infrastructure facilities. VK would also like to acknowledge Department of Science and Technology (DST), SERB, GoI for the financial support under Startup Research Scheme (File No.: SRG/2019/001279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Jha, P. (2020). Role of Metagenomics in Discovery of Industrially Important Cellulase. In: Shrivastava, S. (eds) Industrial Applications of Glycoside Hydrolases . Springer, Singapore. https://doi.org/10.1007/978-981-15-4767-6_10

Download citation

Publish with us

Policies and ethics