Skip to main content

Nanotechnology: An Efficient Technique of Contaminated Water Treatment

  • Chapter
  • First Online:
Contaminants in Drinking and Wastewater Sources

Abstract

In current time, a large mass of people are facing the risk of dangerous and dreadful diseases due to exposure to unclean water and it is also reported that around thirty-five per cent of people die due to contaminated water consumption. To solve these problems, it is highly necessary to adopt a better technique of water purification in order to conserve water resources. Nanotechnology is a promising technique which ensures better water quality due to the use of advanced technology of filtration materials which results in desalinization, recycling and reuse of water, thereby resulting in better performance as well as efficient method for decontaminating wastewater and providing secured water supply. This chapter throws light on the advanced applications of nanotechnology in wastewater treatment. The various types of nanomaterials like carbon nanotubes, graphene-based, metal and metal oxide-based, zeolites, nanocomposites, metal–organic frameworks are discussed focussing on their structures and performances in the removal of water contaminants. Moreover, few bioremediation techniques for the purification of water are also discussed. The toxicity of the nanomaterial after treatment of wastewater on the environment also needs to be tackled carefully to ensure the safety of the environment which is also mentioned in this chapter.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboutorabi L, Morsali A, Tahmasebi E, Buyukgungor O (2016) Metal–organic framework based on isonicotinate N-oxide for fast and highly efficient aqueous phase Cr (VI) adsorption. Inorg Chem 55(11):5507–5513

    Article  CAS  Google Scholar 

  • Adamse AD, Deinema MH, Zehnder AJB (1984) Studies on bacterial activities in aerobic and anaerobic waste water purification. Antonie Van Leeuwenhoek 50(5–6):665–682

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091

    Google Scholar 

  • Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1–3):38–49

    Article  CAS  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156

    Article  CAS  Google Scholar 

  • Audu CO, Nguyen HT, Chang C-Y, Katz MJ, Mao L, Farha OK, Hupp JT, Nguyen ST (2016) The dual capture of As V and As III by UiO-66 and analogues. Chem Sci 7(10):6492–6498

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133

    Article  CAS  Google Scholar 

  • Ayati A, Ahmadpour A, Bamoharram FF, Tanhaei B, Mänttäri M, Sillanpää M (2014) A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 107:163–174

    Article  CAS  Google Scholar 

  • Baby J, Raj JS, Biby ET, Sankarganesh P, Jeevitha MV, Ajisha SU, Rajan SS (2010) Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sci 4(4)

    Google Scholar 

  • Bahrani S, Hashemi SA, Mousavi SM, Azhdari R (2019) Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metab Rev 51(3):356–377

    Article  CAS  Google Scholar 

  • Bakhtiari N, Azizian S (2015) Adsorption of copper ion from aqueous solution by nanoporous MOF-5: a kinetic and equilibrium study. J Mol Liq 206:114–118

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Ole Kusk K (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395

    Article  CAS  Google Scholar 

  • Bergamaschi E, Bussolati O, Magrini A, Bottini M, Migliore L, Bellucci S, Iavicoli I, Bergamaschi A (2006) Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol 19(4 Suppl):3–10

    CAS  Google Scholar 

  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347–357

    Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles. J Hazard Mater 186(1):458–465

    Article  CAS  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29(9):2587–2595

    Article  CAS  Google Scholar 

  • Camblor MA, Corma A, Valencia S (1998) Characterization of nanocrystalline zeolite Beta. Microporous Mesoporous Mater 25(1–3):59–74

    Article  CAS  Google Scholar 

  • Cao J, Elliott D, Zhang W (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7(4–5):499–506

    Article  CAS  Google Scholar 

  • Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J (2009) Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids Surf A 346(1–3):106–113

    Article  CAS  Google Scholar 

  • Chaudhari TD, Eapen S, Fulekar MH (2009) Characterization of industrial waste and identification of potential micro-organism degrading tributyl phosphate. J Toxicol Environ Health Sci 1(1):001–007

    CAS  Google Scholar 

  • Choe S, Chang Y-Y, Hwang K-Y, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41(8):1307–1311

    Article  CAS  Google Scholar 

  • Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942

    Article  CAS  Google Scholar 

  • Dale AL, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha M (2015) Modeling nanomaterial environmental fate in aquatic systems, 2587–2593

    Google Scholar 

  • Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22(23):18333–18344

    Article  Google Scholar 

  • Ding L, Zheng Y (2007) Nanocrystalline zeolite beta: The effect of template agent on crystal size. Mater Res Bull 42(3):584–590

    Article  CAS  Google Scholar 

  • Divya M, Aanand S, Srinivasan A, Ahilan B (2015) Bioremediation–an eco-friendly tool for effluent treatment: a review. Int J Appl Res 1(12):530–537

    Google Scholar 

  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas AJ (2011) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotech 10(7):1125–1132

    Google Scholar 

  • Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G (2007) Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Mater 19(20):3124–3129

    Article  CAS  Google Scholar 

  • Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18(3):386–395

    Article  CAS  Google Scholar 

  • Fan H, Zhang T, Xu X, Lv N (2011) Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties. Sens Actuators B: Chem 153(1):83–88

    Article  CAS  Google Scholar 

  • Fang Q-R, Yuan D-Q, Sculley J, Li J-R, Han Z-B, Zhou H-C (2010) Functional mesoporous metal—organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg Chem 49(24):11637–11642

    Article  CAS  Google Scholar 

  • Farré M, KrisztinaGajda-Schrantz L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95

    Article  Google Scholar 

  • Fratoddi I, Venditti I, Cametti C, Russo MV (2015) How toxic are gold nanoparticles? The state-of-the-art. Nano Res 8(6):1771–1799

    Article  CAS  Google Scholar 

  • Frenkel VS(2008) Membranes in water and wastewater treatment. In: World environmental and water resources congress 2008: Ahupua’A, pp 1–10

    Google Scholar 

  • Fuhrer R, Herrmann IK, Athanassiou EK, Grass RN, Stark WJ (2011) Immobilized β-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: reversible organic contaminant adsorption and enrichment from water. Langmuir 27(5):1924–1929

    Article  CAS  Google Scholar 

  • Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2 + from water. J Colloid Interface Sci 345(2):234–240

    Article  CAS  Google Scholar 

  • Gowri RS, Vijayaraghavan R, Meenambigai P (2014) Microbial degradation of reactive dyes-a review. Int J Current Microbiol Appl Sci 3:421–436

    CAS  Google Scholar 

  • Grubek-Jaworska H, Nejman P, Czumińska K, Przybyłowski T, Huczko A, Lange H, Bystrzejewski M, Baranowski P, Chazan R (2006) Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons. Carbon 44(6):1057–1063

    Google Scholar 

  • Guarino AS (2017) The economic implications of global water scarcity. Res Econom Manag 2(1):51

    Article  Google Scholar 

  • Hebeish AA, Abdelhady MM, Youssef AM (2013) TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohyd Polym 91(2):549–559

    Article  CAS  Google Scholar 

  • Heymann, DL, Prentice T, Reinders LT (2007) The world health report 2007: a safer future: global public health security in the 21st century. World Health Organization

    Google Scholar 

  • Higazy A, Hashem M, ElShafei A, Shaker N, Hady MA (2010) Development of antimicrobial jute packaging using chitosan and chitosan–metal complex. Carbohyd Polym 79(4):867–874

    Article  CAS  Google Scholar 

  • Hu J, Chen G, Lo IM (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  Google Scholar 

  • Kamika I, Momba MNB (2012) Comparing the tolerance limits of selected bacterial and protozoan species to vanadium in wastewater systems. Water Air Soil Pollut 223(5):2525–2539

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche J-M, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2011) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Ciência&SaúdeColetiva 16:165–178

    Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7728–7768

    Article  CAS  Google Scholar 

  • Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107

    Article  CAS  Google Scholar 

  • Kotchey GP, Hasan SA, Kapralov AA, Ha SHH, Kim K, Shvedova AA, Kagan VE, Star A (2012) A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res 45(10):1770–1781

    Article  CAS  Google Scholar 

  • Koyama S, Endo M, Kim Y-A, Hayashi T, Yanagisawa T, Osaka K, Koyama H, Haniu H, Kuroiwa N (2006) Role of systemic T-cells and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice. Carbon 44(6):1079–1092

    Google Scholar 

  • Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Hong-Cai Z (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253(23–24):3042–3066

    Article  CAS  Google Scholar 

  • Lam C-W, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days afterintratracheal instillation. Toxicol Sci 77(1):126–134

    Google Scholar 

  • Lelimousin M, Sansom MSP (2013) Membrane perturbation by carbon nanotube insertion: pathways to internalization. Small 9(21):3639–3646

    Article  CAS  Google Scholar 

  • Li X-Q, Zhang W (2006) Iron nanoparticles: The core—shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10):4638–4642

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphenenanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47(33):9438–9440

    Article  CAS  Google Scholar 

  • Li L-L, Feng X-Q, Han R-P, Zang S-Q, Yang G (2017) Cr (VI) removal via anion exchange on a silver-triazolate MOF. J Hazard Mater 321:622–628

    Article  Google Scholar 

  • Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L, Gautam RK et al (2016) Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res 92:22–37

    Article  CAS  Google Scholar 

  • Luo B, Liu S, Zhi L (2012) Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8(5):630–646

    Article  CAS  Google Scholar 

  • Mahdavian AR, Mirrahimi MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1–3):264–271

    Article  CAS  Google Scholar 

  • Mahmood R, Sharif F, Ali S, Hayyat MU (2013) Bioremediation of textile effluents by indigenous bacterial consortia and its effects on zea mays L. CVC 1415. J Anim Plant Sci 23(4):1193–1199

    CAS  Google Scholar 

  • Maleki A, Hayati B, Naghizadeh M, Joo SW (2015) Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J Ind Eng Chem 28:211–216

    Article  CAS  Google Scholar 

  • Manshian BB, Jenkins GJ, Williams PM, Wright C, Barron AR, Brown AP, Hondow N et al (2013) Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology 7(2):144–156

    Article  CAS  Google Scholar 

  • Martynková G, Valášková M (2014) Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol 14(1):673–693

    Article  Google Scholar 

  • Mera G, Riedel R, Poli F, Müller K (2009) Carbon-rich SiCN ceramics derived from phenyl-containing poly (silylcarbodiimides). J Eur Ceram Soc 29(13):2873–2883

    Article  CAS  Google Scholar 

  • Mera G, Tamayo A, Nguyen H, Sen S, Riedel R (2010) Nanodomain structure of carbon-rich silicon carbonitride polymer-derived ceramics. J Am Ceram Soc 93(4):1169–1175

    Article  CAS  Google Scholar 

  • Mohana S, Shrivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Bioresour Technol 99(3):562–569

    Google Scholar 

  • Mon M, Lloret F, Ferrando‐Soria J, Martí-Gastaldo C, Armentano D, Pardo E (2016) Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a BioMOF. Angew Chem Int Ed 55(37):11167–11172

    Article  CAS  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JAb (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  Google Scholar 

  • Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    Article  CAS  Google Scholar 

  • Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri ML, Agostiano A, Comparelli R (2017) Nanocomposite materials for photocatalytic degradation of pollutants. Catal Today 281:85–100

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569

    Article  CAS  Google Scholar 

  • Qin Q, Wang Q, Dafang F, Ma J (2011) An efficient approach for Pb (II) and Cd (II) removal using manganese dioxide formed in situ. Chem Eng J 172(1):68–74

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Rahimi E, Mohaghegh N (2016) Removal of toxic metal ions from Sungun acid rock drainage using mordenite zeolite, graphenenanosheets, and a novel metal–organic framework. Mine Water Environ 35(1):18–28

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  • Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489:1–16

    Article  CAS  Google Scholar 

  • Reddy PAK, Reddy PVL, Kwon E, Kim K-H, Akter T, Kalagara S (2016) Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ Int 91:94–103

    Article  CAS  Google Scholar 

  • Rivera JM, Rincón S, Youssef CB, Zepeda A (2016) Highly efficient adsorption of aqueous Pb (II) with mesoporous metal-organic framework-5: an equilibrium and kinetic study. J Nanomaterials

    Google Scholar 

  • Rossi LM, Costa NJ, Silva FP, Wojcieszak R (2014) Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem 16(6):2906–2933

    Article  CAS  Google Scholar 

  • Rudd ND, Wang H, Fuentes-Fernandez EM, Teat SJ, Chen F, Hall G, Chabal YJ, Li J (2016) Highly efficient luminescentmetal–organic framework for the simultaneous detection and removal of heavy metals from water. ACS Appl Mater Interfaces 8(44):30294–30303

    Article  CAS  Google Scholar 

  • Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42(40):4908–4911

    Article  CAS  Google Scholar 

  • Saleem H, Rafique U, Davies RP (2016) Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous Mesoporous Mater 221:238–244

    Article  CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  CAS  Google Scholar 

  • Shipley HJ, Yean S, Kan AT, Tomson MB (2009) Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Environ Toxicol Chem: Int J 28(3):509–515

    Article  CAS  Google Scholar 

  • Song W, Grassian VH, Larsen SC (2005) High yield method for nanocrystalline zeolite synthesis. Chem Commun 23:2951–2953

    Article  Google Scholar 

  • Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468(7323):549

    Article  CAS  Google Scholar 

  • Szabó T, Németh J, Dékány I (2003) Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids Surf A 230(1–3):23–35

    Article  Google Scholar 

  • Tesh SJ, Scott TB (2014) Nano-composites for water remediation: a review. Adv Mater 26(35):6056–6068

    Article  CAS  Google Scholar 

  • Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408(1):1–13

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122(3):435–445

    Article  Google Scholar 

  • Van der Bruggen B, Everaert K, Wilms D, Vandecasteele C (2001) Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. J Membr Sci 193(2):239–248

    Article  Google Scholar 

  • Vasudevan S, Lakshmi J (2012) The adsorption of phosphate by graphene from aqueous solution. Rsc Advances 2(12):5234–5242

    Article  CAS  Google Scholar 

  • Verma R, Dwivedi P (2013) Heavy metal water pollution-a case study. Recent Res Sci Technol 5(5)

    Google Scholar 

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236

    Google Scholar 

  • Wang C-B, Zhang W-X (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • White BR, Stackhouse BT, Holcombe JA (2009) Magnetic γ-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As (III), Cu (II), Cd (II), Ni (II), Pb (II) and Zn (II). J Hazard Mater 161(2–3):848–853

    Article  CAS  Google Scholar 

  • Xu X, Bao Y, Song C, Yang W, Liu J, Lin L (2004) Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mesoporous Mater 75(3):173–181

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Shuang H, Zhao MH, Lai C et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705

    Article  CAS  Google Scholar 

  • Yang Q, Zhao Q, Ren SS, Lu Q, Guo X, Chen Z (2016) Fabrication of core-shell Fe3O4@ MIL-100 (Fe) magnetic microspheres for the removal of Cr (VI) in aqueous solution. J Solid State Chem 244:25–30

    Article  CAS  Google Scholar 

  • Yu R-F, Chi F-H, Cheng W-P, Chang J-C (2014) Application of pH, ORP, and DO monitoring to evaluate chromium (VI) removal from wastewater by the nanoscale zero-valent iron (nZVI) process. Chem Eng J 255:568–576

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142

    Google Scholar 

  • Zhang Y, ZhiqiangXie ZW, XuhuiFeng YW, Aiguo W (2016) Unveiling the adsorption mechanism of zeoliticimidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans 45(32):12653–12660

    Article  CAS  Google Scholar 

  • Zou F, Runhan Yu, Li R, Li W (2013) Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@ H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation. ChemPhysChem 14(12):2825–2832

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rojalin Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, T., Sahu, J.R., Panda, J., Hembram, M., Sahoo, S.K., Sahu, R. (2021). Nanotechnology: An Efficient Technique of Contaminated Water Treatment. In: Kumar, M., Snow, D., Honda, R., Mukherjee, S. (eds) Contaminants in Drinking and Wastewater Sources. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4599-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4599-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4598-6

  • Online ISBN: 978-981-15-4599-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics