Skip to main content

Bacteriocin: A Potential Biopreservative in Foods

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 690 Accesses

Abstract

Biopreservation method focuses a great attention to food industry and consumers. Antimicrobial peptides were also termed as proteins or polypeptides produced by bacteria of both Gram negative and Gram positive, during their growth and possess antimicrobial activities. Even though bacteriocins are categorized as antibiotics, they are not. Bacteriocins are generally ribosomally synthesized; some are posttranslationally modified. They have a broader spectrum of activity to the closely related strains. Microbes produced bacteriocins during the primary phase of growth, but antibiotics are synthesized only as secondary metabolites. Bacteriocins are generally cationic and low molecular weight, are easily digested by intestinal enzymes and contain a surplus of arginyl and lysyl residue. They are amorphous in nature and showed helical structure when soaked in aqueous solution. Nowadays bacteriocins are widely used in food processing as natural preservatives, and the use of their metabolic products is generally recognized as safe (GRAS). The natural antimicrobial compound undergoes research in a genetic level as alternative to conventional antibiotics which will benefit both the consumer and the producers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mosheim H, Yamamoto N, Ottawa K, Tada C, Nakai Y (2010) Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J Gen Appl Microbiol 56:151–161

    Article  Google Scholar 

  • Abriouel H, Franz CMAP, Omar NB, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  Google Scholar 

  • Ananou S, Maqueda M, Bueno M, Valdivia E (2007) Biopreservation an ecological approach to the safety and shelf life of foods. In: Communicating current research and educational topics and trends in applied microbiology. a.mendez-Vilas, p 475

    Google Scholar 

  • Aymerich MT, Garriga M, Monfort JM, Nes I, Hugas M (2000) Bacteriocin producing lacto bacilli in Spanish style fermented sausages; characterization of bacteriocin. Food Microbiol 17:33–45

    Article  CAS  Google Scholar 

  • Banerjee S, Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263:9508–9514

    Article  CAS  Google Scholar 

  • Beasly SS, Saris PEJ (2004) Nisin producing Lactococcus lactis strains isolated from human milk. J Appl Environ Microbiol 70:5051–5053

    Article  Google Scholar 

  • Bhuvaneswari S, Madhavan S, Pannerselvam AP (2016) Molecular profiling and bacteriocin production of endophytic Bacteria from Solanum trilobatum. Int J Curr Microbiol Appl Sci 4(8):539–546

    Google Scholar 

  • Bizani D, Morrissy JAC, Domingue APM, Brandelli A (2008) Inhibition of Listeria monocytogenes in dairy products using the bacteriocin like peptide cerein 8A. Int. J Food Microbiol 121:229–233

    Article  CAS  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:83–97

    Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocin; safe natural anti microbial food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  • Dodd HM, Horn N, Gasson MJ (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J Gen Microbiol 136:555–566

    Article  CAS  Google Scholar 

  • EFSA (2007) Scientific opinion of the panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of Toyocerins (Bacillus cereus var. toyoi) as feed additive for turkeys. EFSA J 549:1–11

    Google Scholar 

  • Guder A, Wiedemann I, Sahl HG (2000) Posttranslational modified bacteriocins: the lantibiotics. Biopolymers 55:62–73

    Article  CAS  Google Scholar 

  • Halimi B, Dortu C, Arguelles-Arias A, Thonart P, Joris B, Fickers P (2010) Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics Antimicrob Prot 2:120–125

    Article  CAS  Google Scholar 

  • Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium sp. strains. Lett Appl Microbiol 48:253–260

    Article  CAS  Google Scholar 

  • Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) In: Riley MA, Chavan MA (eds) The diversity of bacteriocin in Gram positive bacteria in bacteriocins: ecology and evolution, pp 45–92

    Google Scholar 

  • Hill C, Rea M, Ross P (2009) Thuricin cd, an antimicrobial for specifically targeting Clostridium difficile. Patent: WO 2009068656-A1 13 04-JUN-2009. TEAGASC, The Agriculture and Food Development Authority (IE), University College Cork-National University of Ireland, Cork (IE)

    Google Scholar 

  • Holzapfel WH, Geisen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocin and food grade enzymes. Int J Food Microbiol 24:343–362

    Article  CAS  Google Scholar 

  • Hosoi T, Kiuchi K (2003) Natto – a food made by fermenting cooked soybeans with Bacillus subtilis (natto). In: Farnworth ER (ed) Handbook of fermented functional foods. CRC Press, Boca Raton, pp 227–245

    Google Scholar 

  • Jack WR, Tagg JR, Ray B (1995) Bacteriocins of gram positive bacteria. Microbiol Rev 59:171–200

    Article  CAS  Google Scholar 

  • Kindoli S, Lee HA, Kim JH (2012) Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang. J Microbiol Biotechnol 22(8):1092–1100

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  Google Scholar 

  • Lawton EM, Ross RP, Hill C, Cotter PD (2007) Two-peptide lantibiotics: a medical perspective. Mini Rev Med Chem 7:1236–1247

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Lelie DV (2002) Endophytic bacteria and their potential applications. CRC Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lutz G, Chavarr’la M, Arias ML, Mata-segereda JF (2006) Microbial degradation of palm (elaeis guineensis) bio diesel. Int J Trop Biol:59–63

    Google Scholar 

  • Martirani L, Varcamonti M, Naclerio G, De Felice M (2002) Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb Cell Factories 1:1–5

    Article  Google Scholar 

  • Nes IF, Yoon SS, Diep DB (2007) Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690

    CAS  Google Scholar 

  • Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production and mode of action. J Mol Microbial Biotechnol 13(4):210–2019

    CAS  Google Scholar 

  • Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Ch 52:612–618

    Article  CAS  Google Scholar 

  • Permtoonpatana P, Hong HA, Khaneja R, Cutting SM (2012) Evaluation of Bacillus subtilis strains as probiotics and their potential as a food ingredients. Benefic Microbes:1–10. https://doi.org/10.3920/BM2012.0002

  • Riley MA (1998) Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet 32:255–278

    Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocin diversity; ecology, evolution and application. Annu Rev Microbiol 56:117–137

    Article  CAS  Google Scholar 

  • Rodriguez E, Martinez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocin produced by lactic acid bacteria. Int J Food Microbiol 80:101–116

    Article  CAS  Google Scholar 

  • Sakala RM, Hayashidani H, Kato Y, Kaneuchi C, Ogawa M (2002) Isolation and characterization of Lactococcus piscium strains from vaccum packaged refrigerated beef. J Appl Microbiol 92:173–179

    Article  CAS  Google Scholar 

  • Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7:158–164

    Article  CAS  Google Scholar 

  • Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food bio preservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  • Sharma N, Gautam N (2008) Antibacterial activity and characterization of bacteriocin of Bacillus mycoides isolated from whey. Int J Biotechnol 7:117–121

    CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  Google Scholar 

  • Stern NJ, Svetoch EA, Eruslanov BV, Kovalev YN, Volodina LI, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP (2005) PaeniBacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J Food Protect 68:1450–1453

    Article  Google Scholar 

  • Sutyak KE, Anderson RA, Dover SE, Feathergill KA, Aroutcheva AA, Faro S, Chikindas ML (2008a) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540758

    Article  Google Scholar 

  • Sutyak KE, Wirawan RE, Aroutcheya AA, Chikindas ML (2008b) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product derived Bacillus amyloliquefaciens. J ApplMicrobiol 104(4):1067–1074

    CAS  Google Scholar 

  • Suzuki M, Yamamoto T, Kawai Y, Inoue N, Yamazaki K (2005) Mode of action of piscicocin CS526 produced by Carnobacterium piscicola CS526. J Appl Microbiol 98(5):1146–1151

    Article  CAS  Google Scholar 

  • Terlabie NN, Sakyi-Dawson E, Amoa-Awua WK (2006) The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int J Food Microbiol 106:145–152

    Article  CAS  Google Scholar 

  • Van Belkum MJ, Stiles ME (2000) Nonlantibiotic antibacterial peptides from lactic acid bacteria. Nat Prod Rep 17:323–335

    Article  Google Scholar 

  • Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria: a review article. APCBEE Procedia 2:50–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manivel, B., Rajkumar, S. (2021). Bacteriocin: A Potential Biopreservative in Foods. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_6

Download citation

Publish with us

Policies and ethics