Skip to main content

Industrial Methanogenesis: Biomethane Production from Organic Wastes for Energy Supplementation

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

There is a limited availability of fossil fuels on earth, which is depleting at a faster pace with growing energy demands worldwide. Moreover, the burning of fossil fuels releases toxic gases which are harmful for all living beings and increase the earth’s temperature by global warming. Therefore, there is a need to look for other alternative renewable energy sources which can play a major role in mitigating energy needs. The gaseous biofuel derived from biomass, like methane and hydrogen, is considered to be renewable energy carriers, as there is abundant biomass available on earth. Although the production of methane from biological route is old, there are few considerations which need to be addressed like economical feasibility, feed supply and improvement in production capabilities. The report deals with major issues involved with methane production from organic wastes, methanogens and their diversity, production efficiency and sustainability in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol 101:1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J Biotechnol 123:71–77

    Article  CAS  PubMed  Google Scholar 

  • Asam Z, Poulsen T, Nizami AS, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants. Appl Energy:1–6. https://doi.org/10.1016/j.apenergy.2010.12.036

  • Balch WE, Fox GE, Magrum LJ (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni E, Jensen AP, Angelidaki I (2010) Steam treatment of digested biofibers for increasing biogas production. Bioresour Technol 101:7668–7671

    Article  CAS  PubMed  Google Scholar 

  • CastrillĂ³n L, FernĂ¡ndez-Nava Y, Ormaechea P, MaraĂ±Ă³n E (2011) Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour Technol 10:7845–7849

    Article  Google Scholar 

  • Chang CJ, Tyagi VK, Lo SL (2011) Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion. Biores Technol. https://doi.org/10.1016/j.biortech.2011.05.031

  • Davidsson A, Wawrzynczyk J, Norrlöw O, La Cour JJ (2007) Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge. J Residuals Sci Technol 4:1–7

    CAS  Google Scholar 

  • Deppenmeier U (2002) Redox-driven proton translocation in methanogenic Archaea. Cell Mol Life Sci 59:1513–1533

    Article  CAS  PubMed  Google Scholar 

  • Devlin DC, Esteves SRR, Dinsdale RM, Guwy AJ (2011) The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour Technol 102:4076–4082

    Article  CAS  PubMed  Google Scholar 

  • Dridi B, Henry M, El Khechine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4(9):e7063

    Article  PubMed  PubMed Central  Google Scholar 

  • Eduok S, John O, Ita B, Inyang E, Coulon F (2018) Enhanced biogas production from anaerobic co-digestion of lignocellulosic biomass and poultry feces using source separated human urine as buffering agent. Front Environ Sci 6:67. https://doi.org/10.3389/fenvs.2018.00067

    Article  Google Scholar 

  • Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8(1):1. https://doi.org/10.1186/s13568-017-0531-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresour Technol 100:3043–3047

    Article  CAS  PubMed  Google Scholar 

  • Frigon JC, Mehta P, Guiot SR (2011) Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy 2:141–161

    Google Scholar 

  • GarfĂ­ M, Ferrer-MartĂ­ L, Villegas V, Ferrer I (2011) Psychrophilic anaerobic digestion of Guinea pig manure in low-cost tubular digesters at high altitude. Bioresour Technol 102:6356–6359

    Article  PubMed  Google Scholar 

  • Hallaji SM, Kuroshkarim M, Moussavi SP (2019) Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnol 19:19. https://doi.org/10.1186/s12896-019-0513-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011a) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102:6750–6756

    Article  CAS  PubMed  Google Scholar 

  • Jackowiak D, Frigon JC, Ribeiro T, Pauss A (2011b) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535–3540

    Article  CAS  PubMed  Google Scholar 

  • Jarvis GN, Strompl C, Burgess DM, Skillman LC, Moore ERB, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40(5):327–332

    Article  CAS  PubMed  Google Scholar 

  • Jayasinghe PA, Hettiaratchi JPA, Mehrotra AK, Kumar S (2011) Effect of enzyme additions on methane production and lignin degradation of land filled sample of municipal solid waste. Bioresour Technol 102:4633–4637

    Article  CAS  PubMed  Google Scholar 

  • Joblin KN, Matsui H, Naylor GE, Ushida K (2002) Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Curr Microbiol 45:46–53

    Article  CAS  PubMed  Google Scholar 

  • Kaparaju P, Serrano M, Angelidaki I (2009) Effect of reactor configuration on biogas production from wheat straw hydrolysate. Bioresour Technol 100:6317–6323

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni G, Kridelbaugh DM, Guss AM, William W (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. PNAS 106(37):15915–15920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lackner N, Hintersonnleitner A, Wagner AO, Illmer P (2018) Hydrogenotrophic Methanogenesis and autotrophic growth of Methanosarcina thermophila. Archaea 2018(4712608):7. https://doi.org/10.1155/2018/4712608

    Article  CAS  Google Scholar 

  • Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour Technol 101:4343–4348

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Wang D, Li Q, Xiao M (2011) Mesophilic batch anaerobic co-digestion of pulp and paper sludge and monosodium glutamate waste liquor for methane production in a bench-scale digester. Bioresour Technol 102:3673–3678

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Lai Q, Zhang C, Zhao H, Ma K, Zhao X, Chen H, Liu D, Xing XH (2009) Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresour Technol 100(12:2889–2895

    Article  Google Scholar 

  • Ma J, Duong TH, Smits M, Verstraete W, Carballa M (2011) Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102:592–599

    Article  CAS  PubMed  Google Scholar 

  • Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. Nov. Int J Syst Evol Microbiol 52:819–822

    CAS  PubMed  Google Scholar 

  • Neves L, Ribeiro R, Oliveira R, Alves MM (2006) Enhancement of methane production from barley waste. Biomass Bioenergy 30:599–603

    Article  CAS  Google Scholar 

  • Nicholson MJ, Evans PN, Joblin KN (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microb Ecol 54(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Pachapur VL, Kutty P, Pachapur P, Brar SK, Bihan YL, Galvez-Cloutier R, Buelna G (2019) Seed pretreatment for increased hydrogen production using mixed-culture systems with advantages over pure-culture systems. Energies 12(3):530. https://doi.org/10.3390/en12030530

    Article  CAS  Google Scholar 

  • Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 34:1117–1124

    Article  CAS  Google Scholar 

  • Parawira W, Read JS, Mattiasson B, Bjornsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50

    Article  CAS  Google Scholar 

  • Parker J (2002) Turning manure into gold: the potential of methane-producing bacteria to meet future energy needs. EMBO Rep 3(12)

    Google Scholar 

  • Patterson JA, Hespell RB (1979) Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr Microbiol 3:79–83

    Article  CAS  Google Scholar 

  • Pohland FG, Al-Yousfi AB, Reinhard DR (2002) Anaerobic digestion of organic solid waste in bioreactor landfills. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA, London, pp 303–315

    Google Scholar 

  • Qiao W, Yan X, Ye J, Sun Y, Wang W, Zhang Z (2011) Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew Energy:1–6

    Google Scholar 

  • Rabii A, Aldin S, Dahman Y, Elbeshbishy E (2019) A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 12:1106. https://doi.org/10.3390/en12061106

    Article  CAS  Google Scholar 

  • Rafique R, Poulsen TG, Nizami AS, Asam Z, Murphy JD, Kiely G (2010) Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 35:4556–4561

    Article  CAS  Google Scholar 

  • Sarker S, Lamb JJ, Dag RH, Lien KM (2019) A review of the role of critical parameters in the design and operation of biogas production plants. Appl Sci 9(9):1915. https://doi.org/10.3390/app9091915

    Article  CAS  Google Scholar 

  • Shanmugam P, Horan NJ (2009) Simple and rapid methods to evaluate methane potential and biomass yield for a range of mixed solid wastes. Bio/Technology 100:471–474

    CAS  Google Scholar 

  • Shin EC, Choi BR, Lim WJ (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10(6):313–319

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Tilche A, Galatola M (2008) The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Water Sci Technol 57(11):1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang T, Liang M, Wang J, Zhang W (2009) Hydrogen-methane production from swine manure: effect of pretreatment and VFAs accumulation on gas yield. Bio/Technology 33:1131–1138

    CAS  Google Scholar 

  • Wawrzynczyk J, Dey ES, Norrlow O, Jansen JIC (2003) Alternative method for sludge reduction using commercial enzymes. In: Aqua enviro technology transfer: eighth CLWEM/aqua enviro European biosolids and organic residuals Conference, Wakefield, pp 1–5

    Google Scholar 

  • Whitford MF, Teather RM, Forster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:1–5

    Article  Google Scholar 

  • Williams RT, Crawford RL (1985) Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl Environ Microbiol 50(6):1542–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright ADG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70(3):1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright ADG, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73(13):4206–4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64(8):1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Yeshanew MM, Paillet F, Barrau C, Frunzo L, Lens PNL, Esposito G, Escudie R, Trably E (2018) Co-production of hydrogen and methane from the organic fraction of municipal solid waste in a pilot scale dark fermenter and methanogenic biofilm reactor. Front Environ Sci 6:41. https://doi.org/10.3389/fenvs.2018.00041

    Article  Google Scholar 

  • Zhang Q, He J, Tian M, Maoa Z, Tang L, Zhang J, Zhang H (2011a) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:8899–8906

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Tang L, Zhang J, Mao J, Jiang L (2011b) Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues. Bioresour Technol 102:3958–3965

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Zhang Z, Zhang R, Li M, Lei Z, Tsumi M, Sugiura N (2010) Methane production from rice straw pretreated by a mixture of acetic–propionic acid. Bioresour Technol 101:990–994

    Article  CAS  PubMed  Google Scholar 

  • Zhou MI, Hernandez-Sanabria E, Le LG (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75(20):6524–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76(12):3776–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorba GT, Dilek Sanin F (2013) Disintegration of sludge by sonication and improvement of methane production rates in batch anaerobic digesters. Clean: Soil Air Water 41(4):396–402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, R., Verma, A., Verma, S., Varma, A. (2021). Industrial Methanogenesis: Biomethane Production from Organic Wastes for Energy Supplementation. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_4

Download citation

Publish with us

Policies and ethics