Skip to main content

Psychrophiles as the Source for Potential Industrial Psychrozymes

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Temperature is one of the foremost imperative environmental factors for life because it impacts most biochemical response. It has directly accompanied by the changes in gene expression, membrane fluidity, protein conformation and stability reaction kinetics. During the past two decades, studies on low-temperature organisms have been accelerating the interest in research of multicellular vertebrates, invertebrates, bacteria and algae from deep sea, ocean, glaciers and Polar regions. These psychrozymes have shown high catalytic activity at low and moderate temperatures. The research on cold-active enzymes mostly concentrates on pharmaceuticals uses, food processes technology, bioremediation and antifreeze proteins. This present study focused on the briefing of the residual modification and structural changes for the adaptation of the psychrozymes. In details, we discussed the molecular strategy for cryo-defense by psychrophilic bacteria and their potential industrial applications. Thus it will be assumed that in the near future the psychrophiles would be a potent source for cold-active enzymes and might be used for the cost-effective production of the industrial important biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajari N, Feller G, Gerday C, Haser R (1998b) Crystal structures of the psychrophilic a-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci 7:564–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghajari N, Feller G, Gerdayb C, Haser H (1998a) Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Aghajari N, Roth M, Haser R (2002) Crystallographic evidence of a transglycosylation reaction: ternary complexes of a psychrophilic alpha-amylase. Biochemistry 41:4273–4280

    Article  CAS  PubMed  Google Scholar 

  • Aislabie J, Balks MR, Foght KM, Waterhouse E (2004) Hydrocarbon spills on the soil of the Ross Sea region, Antarctica: effect and management. Environ Sci Technol 38:1256–1274

    Article  Google Scholar 

  • Arpigny JL, Lamotte J, Gerday C (1997) Molecular adaptation to cold of an Antarctic bacterial lipase. J Mol Catal Bacterial Enzyme 3:29–35

    Article  CAS  Google Scholar 

  • Charollais J, Dreyfus M, Iost I (2004) CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32:2751–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol 10:311

    Article  CAS  Google Scholar 

  • Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature-a review. J Biosci 31:157–165

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Clarke A, Cockell SC, Convey P, Detrich HW et al (2004) Antarctic genomics. Comp Funct Genomics 5:230–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coker JA, Sheridan PP, Loveland CJ, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E et al (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond Ser B Biol Sci 357:917–925

    Article  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796

    Article  PubMed  Google Scholar 

  • de Vries AL, Cheng C-HC (1992) The role of antifreeze glycopeptides and peptides in the survival of cold-water fishes. In Water and Life:301–315

    Google Scholar 

  • Duman JG, Wu SW, Xu L, Tursman D, Olsen TM (1991) Adaptations of insects to subzero temperatures. Q Rev Biol 66:387–410

    Article  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    Article  CAS  PubMed  Google Scholar 

  • Feller G, D’Amico S, Benotmane AM, Joly F, Van Beeumen J et al (1998) Characterization of the C-terminal propeptide involved in bacterial wall spanning of alpha-amylase from the psychrophile Alteromonas haloplanctis. J Biol Chem 273:12109–12115

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Payan F, Theys F, Qian M, Haser R et al (1994) Stability and structural analysis of alpha-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222:441–447

    Article  CAS  PubMed  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahier M, Chessa JP, Claverie P, Collins T et al (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72

    Article  CAS  PubMed  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation to organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  CAS  PubMed  Google Scholar 

  • Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Hwang KY, Kim SH, Sung HC, Han YS, Cho YJ (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767

    Article  CAS  PubMed  Google Scholar 

  • Lelivelt MJ, Kawula TH (1995) Hsc 66, and Hsp 70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WY, Shi YW, Wang XQ, Lou K (2008) Isolation and identification of a strain producing cold adapted β-galactosidase, and purification and characterization of the enzyme. Czech J Food Sci 26:284–290

    Article  CAS  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    Article  CAS  PubMed  Google Scholar 

  • Margesin M, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigid. Lett Appl Microbiol 40:553–459

    Article  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  CAS  Google Scholar 

  • Mavromatis K, Tsigos I, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2002) Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. Eur J Biochem 269:2330–2325

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulicherla KK, Ghosh M, Suresh PK, Rao KRSS (2011) Psychrozymes-the next generation industrial enzymes. J Mar Sci Res Dev 1(1):1–7

    Article  Google Scholar 

  • Purusharth RI, Klein F, Sulthana S, Jager S, Jagannadham MV (2005) Exoribonuclease R interacts with endoribonuclease E and an RNA-helicase in the psychrotrophic bacterium Pseudomonas syringae. LZ 4W. J Biol Chem 280:14572–14578

    Article  CAS  PubMed  Google Scholar 

  • Qian M, Haser R, Buisson G, Duee E, Payan F (1994) The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2 Ã… resolution. Biochemistry 33:6284–6294

    Article  CAS  PubMed  Google Scholar 

  • Radjasa OK (2004) Deep-sea bacteria and their biotechnological potential. J Coastal Dev 7(3):109–118

    Google Scholar 

  • Reeves RB (1977) The interaction of body temperature and acid-base balance in ectothermic vertebrates. Annu Rev Physiol 39:559–586

    Article  CAS  PubMed  Google Scholar 

  • Reeves RB (1985) Alphastat Regulation of Intracellular Acid-Base State?. In: Gilles R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-70610-3_33

  • Russell AD (2002) Antibiotic and biocide resistance in bacteria: comments and conclusions. J Appl Microbiol Symp Suppl 92:171S–173S

    Article  Google Scholar 

  • Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  CAS  PubMed  Google Scholar 

  • Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama AC, Aoyagi H, Ozawa T, Tanaka H (2002) Production of 5′-phophodiesterase by Catharanthus roseus cells promoted by heat-degraded products generated from uronic acid. J Biosci Bioeng 94:154–159

    Article  Google Scholar 

  • Trevino L, Esquivel CJ, Herrera RR, Aguilar C (2007) Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture. J Zhejiang Univ—Sci B 8(10):771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeret V, Chessa JP, Gerday C, Van Beeumen J (1997) Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophyle Pseudomonas aeruginosa. Protein Sci 6:2462–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violot S, Aghajarim N, Czjzek M, Feller G, Sonan GK et al (2005) Structure of a full-length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146

    Article  Google Scholar 

  • Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H et al (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66:239–247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, M., Pulicherla, K.K. (2021). Psychrophiles as the Source for Potential Industrial Psychrozymes. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_16

Download citation

Publish with us

Policies and ethics