Skip to main content

Endophytes as Guardians of Plants Against Diseases

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

A huge number of different microbes are resident of interior parts of the plants which are collectively known as endosphere microbiome of the plants. There are different classes of these endophytes which are primarily bacterial and fungal organisms. Some of them are endophytic to the aboveground parts of the plants, while many are endophytic to the roots. Several biotic and abiotic factors affect the occurrence and diversity of these endophytes. These endophytic microbes have developed very vital symbiotic relationship with the plants and are involved in a variety of physiological functions. For instance, different endophytic microbes act antagonistically against several plant pathogens and are involved in the activation of plant defense responses. They act as guardians of the plants against diseases by growth promotion through nitrogen fixation, nutrient mobilization, iron sequestration, and synthesis of ACC deaminase and induction of various phytohormones. Similarly, these antagonistic microbes could directly defend the plants against pathogens through production of secondary metabolites, ROS, antimicrobial compounds, allelochemicals, and toxins. Moreover, these endophytes induce siderophore production, activate induced systemic resistance, and are involved in biosynthesis of antibiotics and proteolytic enzyme to directly control the plant pathogens. This chapter elaborates various classes of endophytes and mechanisms involved in the antagonism employed by different endophytes against various plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MA, Naveed M, Mustafa A, Abbas A (2017) Chapter 11: The good, the bad and the ugly of rhizosphere microbiome. In: Kumar V, Kumar M, Parsad R, Choudhary DK (eds) Probiotics and plant health. Springer Nature, Singapore

    Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Engelbrecht BMJ (2007) Fungal endophytes double minimum leaf conductance in seedlings of a tropical tree. J Trop Ecol 23:369–372. https://doi.org/10.1017/S0266467407004038

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274. https://doi.org/10.1046/j.1461-0248.2000.00159.x

    Article  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654. https://doi.org/10.1073/pnas.2533483100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. [online] URL: http://www.sciencedirect.com/science/article/pii/S1360138513002598

    CAS  PubMed  Google Scholar 

  • Barengo N, Sieber TN, Holdenrieder O (2000) Diversity of endophytic mycobiota in leaves and twigs of pubescent birch (Betula pubescens). Sydowia 52:305–320

    Google Scholar 

  • Barka EA, Belarbi A, Hachet C, Nowak J, Audran J-C (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    CAS  PubMed  Google Scholar 

  • Bashan Y, Puente ME, de Bashan L, Hernandez JP (2008) Environmental uses of plant growth-promoting bacteria. In: Barka EA, Clément C (eds) Plant–microbe interactions. Research Signpost, Trivandrum, KL, India

    Google Scholar 

  • Basu S, Kumar G, Chhabra S, Prasad R (2020) Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In: Verma JP, Macdonald C, Gupta VK, Podile AR (eds) New and future developments in microbial biotechnology and bioengineering: phytomicrobiome for sustainable agriculture. Elsevier, Amsterdam, pp 149–157

    Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988. [online] URL:. https://doi.org/10.1139/w98-097

    Article  CAS  Google Scholar 

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Ferreira PCG (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450. https://doi.org/10.1186/1471-2164-10-450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenstein K, Albrectsen BR, Martín JA, Hultberg M, Sieber TN, Helander M, Witzell J (2015) Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl 60:655–667

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. [online] URL: http://www.sciencedirect.com/science/article/pii/S0958166913006745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655

    CAS  PubMed  Google Scholar 

  • Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117:237–246. https://doi.org/10.1007/s10658-006-9089-1

    Article  Google Scholar 

  • Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS (2016) Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Mol Biol 90:561–574

    CAS  PubMed  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:208–218

    CAS  PubMed  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer-Verlag, Berlin, pp 1–42

    Google Scholar 

  • Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924. https://doi.org/10.3732/ajb.2006463

    Article  PubMed  Google Scholar 

  • Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667. https://doi.org/10.3732/ajb.90.11.1661

    Article  PubMed  Google Scholar 

  • De Bary A (1866) Morphologie and Physiologie der Pilze, Flechten and Myxomyceten. Holfmeister’s handbook of physiological botany, vol 2. Leipzig

    Google Scholar 

  • Deckert RJ, Peterson RL (2000) Distribution of foliar fungal endophytes of Pinus strobus between and within host trees. Can J For Res 30:1436–1442. https://doi.org/10.1139/x00-078

    Article  Google Scholar 

  • Deckert RJ, Melville LH, Peterson RL (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle phase in the foliage of Pinus strobus. Mycol Res 105:991–997

    Google Scholar 

  • Deckert RJ, Hsiang T, Peterson RL (2002) Genetic relationships of endophytic Lophodermium nitens isolates from needles of Pinus strobus. Mycol Res 106:305–313. https://doi.org/10.1017/S0953756201005494

    Article  Google Scholar 

  • Din GM, Ali MA, Abbas A, Naveed M, Naveed K, Anwar J, Tanveer MH (2018a) Consortium application of endophytic bacteria and fungi improves grain yield and physiological attributes in advanced lines of bread wheat. Turkish J Agric Food Sci Technol 6:136–144. https://doi.org/10.24925/turjaf.v6i2.136-144.1416

    Article  Google Scholar 

  • Din GM, Moosa A, Ghummen UF, Jabran M, Abbas A, Naveed M, Jabbar A, Ali MA (2018b) Host status of commonly planted ornamentals to Meloidogyne incognita and management through endophytic bacteria. Pak J Zool 50:1393–1402. https://doi.org/10.17582/journal.pjz/2018.50.4.1393.1402

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149. https://doi.org/10.1080/713610853

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57:621–629. [online] URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132014000500621&nrm=iso

    Google Scholar 

  • Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    CAS  PubMed  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16:580–587

    CAS  PubMed  Google Scholar 

  • Esther P, Li YC, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402

    Google Scholar 

  • Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369:115–129. [online] URL: http://www.jstor.org/stable/42952605

    CAS  Google Scholar 

  • Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L (2010) Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol 36:179–194. [online] URL:. https://doi.org/10.3109/10408410903584863

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW (1988) Endophytic bacteria for the delivery of agrochemicals to plants. In: ACS Symposium series-American Chemical Society (USA)

    Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344

    CAS  PubMed  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH et al (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4(7):e1000141–e1000141. https://doi.org/10.1371/journal.pgen.1000141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fench E, Kim B-S, Iyer-Pascuzzi AS (2016) Mechanisms of quantitative disease resistance in plants. Semin Cell Dev Biol. Elsevier 56:201–208

    Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent pseudomonas sp. Plant Physiol 96:928–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327. https://doi.org/10.1016/j.mycres.2005.10.005

    Article  PubMed  Google Scholar 

  • Gennaro M, Gonthier P, Nicolotti G (2003) Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in northern Italy. J Phytopathol 151:529–534. https://doi.org/10.1046/j.1439-0434.2003.00763.x

    Article  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118. [online] URL: https://onlinelibrary.wiley.com/doi/abs/10.1016/j.femsec.2003.12.009

    CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    PubMed  PubMed Central  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer

    Google Scholar 

  • Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:427. [online] URL: https://www.frontiersin.org/article/10.3389/fmicb.2014.00427

    PubMed  PubMed Central  Google Scholar 

  • Goyal S, Ramawat KG, Mérillon JM (2016) Different shades of fungal metabolites: an overview. In: Fungal Metabolites. pp 1–29. [online] URL: https://app.dimensions.ai/details/publication/pub.1024372190

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. https://doi.org/10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusain DY, Kamal R, Mehta C, Singh U, Sharma AK (2015) Phosphate solubilizing and Indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. J Environ Biol 36:301–307

    PubMed  Google Scholar 

  • Gyaneshwar P, Naresh KG, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93. [online] URL. https://doi.org/10.1023/A:1020663916259

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial Endophytes. Microbiol Mol Biol Rev 79:293–320. [online] URL: https://www.ncbi.nlm.nih.gov/pubmed/26136581

    PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    CAS  PubMed  Google Scholar 

  • Hata K, Atari R, Sone K (2002) Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience 43:369–373

    Google Scholar 

  • Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49:229–232

    Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herre EA, Van Bael SA, Maynard Z, Robbins N, Bischoff J, Arnold AE, Rojas E, Mejia LC, Cordero RA, Woodward C (2005) Tropical plants as chimera: some implications of foliar endophytic fungi for the study of host plant defense, physiology, and genetics. Biotic interactions in the tropics 1011:226–237

    Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43. [online] URL: http://www.sciencedirect.com/science/article/pii/S0944501316300131

    Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    CAS  PubMed  Google Scholar 

  • Hol WHG, de la Pena E, Moens M, Cook R (2007) Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic Appl Ecol 8:500–509

    Google Scholar 

  • Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australas Plant Pathol 35:411–418

    Google Scholar 

  • Jin H, Yang X-Y, Yan Z-Q, Liu Q, Li X-Z, Chen J-X, Zhang D-H, Zeng L-M, Qin B (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37:376–385. [online] URL: http://www.sciencedirect.com/science/article/pii/S0723202014000745

    PubMed  Google Scholar 

  • Johnson JA, Whitney NJ (1989) A study of fungal endophytes of needles of balsam fir (Abies balsamea) and red spruce (Picea rubens) in New Brunswick, Canada, using culture and electron microscope techniques. Can J Bot 67:3513–3516

    Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from Endophytes and their potential in. Am J Biochem Mol Biol 1:291–309

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root colonizing fungi. New Phytol 140:295–310. https://doi.org/10.1046/j.1469-8137.1998.00265.x

    Article  PubMed  Google Scholar 

  • Jurc D, Jurc M, Sieber TN, Bojovic S (2000) Endophytic Cenangium ferruginosum (Ascomycota) as a reservoir for an epidemic of Cenangium dieback in Austrian pine. Phyton-Annales Rei Botanicae 40:103–108

    Google Scholar 

  • Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71:337–344

    Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui M, Kawaharada Y et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50. https://doi.org/10.1093/dnares/dsp026

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 9:100182. https://doi.org/10.1016/j.plgene.2019.100182

    Article  CAS  Google Scholar 

  • Kauhanen M, Vainio EJ, Hantula J, Eyjolfsdottir GG, Niemelä P (2006) Endophytic fungi in Siberian larch (Larix sibirica) needles. For Pathol 36:434–446. https://doi.org/10.1111/j.1439-0329.2006.00472.x

    Article  Google Scholar 

  • Kernaghan G, Mayerhofer M, Griffin A (2017) Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Can J Microbiol 63:583–595

    CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Dictionary of the fungi. CABI Publishing, Wallingford

    Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1384. Retrieved from. https://doi.org/10.1038/nbt1243

    Article  CAS  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657. [online] URL: https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2007.02008.x

    PubMed  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Kundu P, Gill R, Nehra A, Sharma KK, Hasanuzzaman M, Prasad R, Tuteja N, Singh Gil SS (2020) Reactive oxygen species (ROS) management in engineered plants for abiotic stress tolerance. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, pp 241–262

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207. [online] URL:. https://doi.org/10.1039/C1NP00030F

    Article  CAS  PubMed  Google Scholar 

  • Kwak M-J, Song JY, Kim S-Y, Jeong H, Kang SG, Kim BK et al (2012) Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J Bacteriol 194(16):4432–4433. https://doi.org/10.1128/JB.00821-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Ishiga Y, Clermont K, Mysore KS (2013) Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PeerJ 1:e34

    PubMed  PubMed Central  Google Scholar 

  • Leylaie S, Zafari D (2018) Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of Endophytic Trichoderma species from Vinca plants. Front Microbiol 9:1484

    PubMed  PubMed Central  Google Scholar 

  • Liu WY, Chung KM, Wong C, Jiang J, Hui RK, Leung FC et al (2012) Complete genome sequence of the endophytic Enterobacter cloacae subsp. cloacae strain ENHKU01. J Bacteriol 194:5965. https://doi.org/10.1128/JB.01394-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11:420–427

    PubMed  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84:37–45

    Google Scholar 

  • Maheshwari DK (2017) Endophytes: biology and biotechnology: volume 1. Springer Int. Publishing. DOI: https://doi.org/10.1007/978-3-319-66541-2

    Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532. [online] URL: https://www.ncbi.nlm.nih.gov/pubmed/21366893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One 6:e24750–e24750. [online] URL: https://www.ncbi.nlm.nih.gov/pubmed/21935454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerkhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    PubMed  PubMed Central  Google Scholar 

  • Merlin E (1922) On the mycorrhizas of Pinus sylvestris L. and Picea abies Karst. A preliminary note. J Ecol 9:254–257. https://www.jstor.org/stable/2255406

    Google Scholar 

  • Mishra M, Prasad R, Varma A (2015) Endophytic fungi: biodiversity and functions. Int J Pharma BioSci 6(1):18–46

    Google Scholar 

  • Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810. https://doi.org/10.1046/j.1365-294x.2001.01304.x

    Article  PubMed  Google Scholar 

  • Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N (2016) Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci 7:1574. https://doi.org/10.3389/fpls.2016.01574

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied soil ecology : a section of agriculture. Ecosyst Environ 15:183–190. [online] URL:. https://doi.org/10.1016/S0929-1393(00)00094-9

    Article  Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, pp 179–197

    Google Scholar 

  • Pirttilä AM, Podolich O, Koskimäki JJ, Hohtola E, Hohtola A (2008) Role of origin and endophyte infection in browning of bud-derived tissue cultures of scots pine (Pinus sylvestris L.). Plant Cell Tissue Organ Cult 95:47–55. [online] URL:. https://doi.org/10.1007/s11240-008-9413-x

    Article  CAS  Google Scholar 

  • Plett JM, Martin F (2015) Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr Opin Plant Biol 26:45–50. [online] URL: http://www.sciencedirect.com/science/article/pii/S1369526615000825

    PubMed  Google Scholar 

  • Prasad R, Sharma M, Kamal S, Rai MK, Rawat AKS, Pushpangdan P, Varma A (2008) Interaction of Piriformospora indica with medicinal plants. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 655–678

    Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing Switzerland, Cham, pp 247–260

    Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Google Scholar 

  • Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N (2020) The microbial symbionts: potential for the crop improvement in changing environments. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, pp 233–240

    Google Scholar 

  • Qawasmeh A, Obied HK, Raman A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J Agric Food Chem 60:3381–3388

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. [online] URL:. https://doi.org/10.1146/annurev-phyto-081211-172908

    Article  CAS  PubMed  Google Scholar 

  • Ragazzi A, Moricca S, Capretti P, Dellavalle I, Turco E (2003) Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. For Pathol 33:31–38. https://doi.org/10.1046/j.1439-0329.2003.3062003.x

    Article  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren JH, Ye JR, Liu H, Xu XL, Wu XQ (2011) Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent. World J Microbiol Biotechnol 27:2203–2215. [online] URL:. https://doi.org/10.1007/s11274-011-0686-6

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and Defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343. [online] URL:. https://doi.org/10.1146/annurev-phyto-073009-114447

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Rojas A, Holguin G, Glick BR, Bashan Y (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187. [online] URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1574-6941.2001.tb00802.x

    CAS  PubMed  Google Scholar 

  • Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte H erbaspirillum seropedicae. Environ Microbiol 15:916–927

    CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Google Scholar 

  • Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Costa JC, Bezerra JL (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104:760–764. https://doi.org/10.1017/S0953756299001938

    Article  Google Scholar 

  • Sánchez-Contreras M, Martinez-Granero E, Redondo-Nieto M, Rivilla R, Martín M (2013) Biocontrol of Fungal Root Pathogens by Fluorescent Pseudomonas. In Beneficial Plant-microbial Interactions: Ecology and Applications. Edited by González MBR & Gonzalez-Lopez J. Taylor and Fancis Group. Pp. 270

    Google Scholar 

  • Santamaria O, Diez JJ (2005) Fungi in leaves, twigs and stembark of Populus tremula from northern Spain. For Pathol 35:95–10. https://doi.org/10.1111/j.1439-0329.2004.00389.x

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. [online] URL:. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    CAS  PubMed  Google Scholar 

  • Schouten A (2016) Mechanisms involved in nematode control by endophytic fungi. Annu Rev Phytopathol 54:121–142

    CAS  PubMed  Google Scholar 

  • Selosse MA, Vohník M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178:3–7. https://doi.org/10.1111/j.1469-8137.2008.02390.x

    Article  PubMed  Google Scholar 

  • Seo DJ, Nguyen DMC, Song YS, Jung WJ (2012) Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1. J Microbiol Biotechnol 22:407–415

    CAS  PubMed  Google Scholar 

  • Shine MB, Xiao X, Kachroo P, Kachroo A (2018) Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci. [online] URL: http://www.sciencedirect.com/science/article/pii/S0168945218300049

  • Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2015) An alpha-Glucosidase inhibitor from an Endophytic Cladosporium sp. with potential as a biocontrol agent. Appl Biochem Biotechnol 175:2020–2034. [online] URL:. https://doi.org/10.1007/s12010-014-1325-0

    Article  CAS  PubMed  Google Scholar 

  • Souza A, Cruz JC, Sousa NR, Procópio ARL, Silva GF (2014) Endophytic bacteria from banana cultivars and their antifungal activity. Genet Mol Res 13:8661–8670

    CAS  PubMed  Google Scholar 

  • Stefani FOP, Be´rube´ JA (2006) Biodiversity of foliar fungal endophytes in white spruce (Picea glauca) from southern Quebec. Can J Bot 84:777–790. https://doi.org/10.1139/b06-022. Corpus ID: 85178648

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas-fir. Can J Bot 65:2614–2621

    Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Microbial endophytes. eds Bacon CW, White JF Marcel Dekker Press, pp 17–44

    Google Scholar 

  • Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3:65–76. [online] URL: https://www.tandfonline.com/doi/abs/10.1080/21501203.2012.656724

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757. https://doi.org/10.1128/AEM.02239-08

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taurian T, Anzuay S, Angelini J, Tonelli M, Ludueña L, Pena D, Ibañez F, Fabra A (2009) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329: 421–431

    Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54:663–669. [online] URL:. https://doi.org/10.1007/s10526-009-9216-y

    Article  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjunia W. & A. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540. https://doi.org/10.1007/s11274-005-7579-5

    Article  Google Scholar 

  • Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant Pathol 75:100–105

    Google Scholar 

  • Varanda CMR, Oliveira M, Materatski P, Landum M, Clara MIE, Félix M d R (2016) Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol 120:1525–1536

    PubMed  Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852. https://doi.org/10.1163/156854106779799259

    Article  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. [online] URL:. https://doi.org/10.1007/s00374-004-0750-6

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Hu T, Jiao Y, Wei J, Cao K (2009) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China 3:247–252. [online] URL:. https://doi.org/10.1007/s11703-009-0042-x

    Article  Google Scholar 

  • Waqas M, Khan AL, Lee I-J (2014) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9:478–487

    CAS  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193(13):3383–3384. https://doi.org/10.1128/JB.05055-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    CAS  PubMed  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430. https://doi.org/10.1371/journal.pgen.1002430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105(21):7564–7569. https://doi.org/10.1073/pnas.0801093105

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang R-X, Zhang S-W, Xue D, Xuan J-H, Zhang Y-B, Peng B-B (2018) Culturable Endophytes diversity isolated from Paeonia ostii and the genetic basis for their bioactivity. Pol J Microbiol 67:441–454

    PubMed  PubMed Central  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In: Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Springer, pp 99–114

    Google Scholar 

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens: a review. Span J Agric Res 6:138–146

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. [online] URL:. https://doi.org/10.1039/B609472B

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li J, Qi G, Wen K, Lu J, Zhao X (2011) Insecticidal effect of recombinant endophytic bacterium containing Pinellia ternata agglutinin against white backed planthopper, Sogatella furcifera. Crop Protection—CROP PROT 30:1478–1484

    Google Scholar 

  • Zhao JH, Bai FY, Guo LD, Jia JH (2002) Rhodotorula pinicola sp nov., a basidiomycetous yeast species isolated from xylem of pine twigs. FEMS Yeast Res 2:159–163. https://doi.org/10.1111/j.1567-1364.2002.tb00080.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Amjad Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azeem, F. et al. (2021). Endophytes as Guardians of Plants Against Diseases. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_10

Download citation

Publish with us

Policies and ethics