Skip to main content
Log in

Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Poplar canker is a kind of serious disease of poplar branches in China and all over the world. In China, the poplar canker is mainly caused by three pathogens of Cytospora chrysosperma, Phomopsis macrospora and Fusicoccum aesculi, which is hard to control. A collection of 1,013 bacterial isolates obtained from the poplar stems in 9 regions of China. Of all the strains tested, 13 bacterial isolates inhibiting three pathogens (C. chrysosperma, P. macrospora and F. aesculi) growth were selected, whose inhibition zone width were more than 15 mm. Strain JK-SH007 exhibited the most obvious antagonistic activity. Besides, this strain also produced extracellular hydrolytic enzymes (β-1, 3-glucanases, proteases and chitinases). This bacterium had no pathogenicity and was identified as Burkholderia cepacia complex (Bcc) genomovar IX: B. pyrrocinia by the Biolog identification system combined with 16S rDNA and recA gene sequence analysis and morphological, physiological and biochemical methods characteristics. B. pyrrocinia JK-SH007 exhibited the highest biocontrol and colonization capabilities. After 3 months, plant height and ground diameter in poplar seedlings inoculated with JK-SH007 were significantly (P < 0.05) higher than in control (non-inoculated) plants. The selected B. cepacia isolate colonized poplar stems and leaves endophytically, promoting plant growth and suppressing pathogenic activities of C. chrysosperma, P. macrospora and F. aesculi on seedling of poplar. This is one of the few reports dealing with isolation and characterization of B. cepacia strains with biocontrol activity against the poplar canker. The endophytic isolate also has the potential to perform as plant growth promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan ND, Kooi C, Sokol PA, Beveridge TJ (2003) Putative virulence factors are released in association with membrane vesicles from Burkholderia cepacia. Can J Microbiol 49:613–624

    Article  CAS  Google Scholar 

  • Araujo WL, Saridakis HO, Barroso PAV, Aguilar-Vildoso CI, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  CAS  Google Scholar 

  • Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284

    Article  CAS  Google Scholar 

  • Bal AS, Chanway CP (2000) Isolation and identification of endophytic bacteria from lodgepole pine and western red cedar. Auburn University Web Site, Available: http://www.ag.auburn.edu/argentina/pdfmanuscripts/bal.pdf

  • Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S, Vandamme P (2001) Burkholderia cepacia Genomovar III is a common plant-associated bacterium. Appl Environ Microb 67:982–985

    Article  CAS  Google Scholar 

  • Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–5313

    Article  CAS  Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237

    Article  CAS  Google Scholar 

  • Bevivino A, Dalmastri C, Tabaechioni S, Chiarina L (2000) Efficacy of Burkholderia cepacia MCI 7 on disease suppression and growth promotion of maize. Biol Fert Soils 31:225–231

    Article  Google Scholar 

  • Brooks D, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biocontrol agents for oak wilt. Biol Con 4:373–381

    Article  Google Scholar 

  • Budi SW, Tuinen DV, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. App Soil Ecol 15:191–199

    Article  Google Scholar 

  • Buren AV, Andre C, Ishmaru CA (1993) Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 83:1406

    Google Scholar 

  • Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  Google Scholar 

  • Burkholder W (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117

    Google Scholar 

  • Caraher E, Reynolds G, Murphy P, McClean S, Callaghan M (2008) Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. Eur J Clin Microbiol 26(3):213–216

    Google Scholar 

  • Cardona ST, Wopperer J, Eberl L, Valvano MA (2005) Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. FEMS Microbiol Lett 205:97–104

    Article  Google Scholar 

  • Chang WT, Chen YC, Jao CL (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol 98:1224–1230

    Article  CAS  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286

    Article  CAS  Google Scholar 

  • Coenye T, Lipuma JJ, Henry D, Hoste B, Vandemeulebroecke K, Gillis M, Speert DP, Vandamme P (2001a) Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Micr 51:271–279

    Article  CAS  Google Scholar 

  • Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P (2001b) Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis related isolates. Int J Syst Evol Micr 51:1481–1490

    Article  CAS  Google Scholar 

  • Coenye T, Vandamme P, Govan JR, Lipuma JJ (2001c) Taxonomy and identification of the Burkholderia cepacia complex. J Clin M icrobiol 39:3427–3436

    CAS  Google Scholar 

  • Dalmastri C, Pirone L, Tabacchioni S, Bevivino A, Chiarini L (2006) Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates. Microbiology 246:39–45

    Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Bio Technol 6:282–286

    CAS  Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, Bruijn S, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W18 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    Article  CAS  Google Scholar 

  • Essghaier B, Fardeau ML, Cayol JL, Haijaoui MR, Boudabous A, Jijakli H, Zouaoui NS (2009) Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol 106:833–846

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1121–1221

    Article  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  Google Scholar 

  • Govan JR, Hughes JE, Vandamme P (1996) Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45:395–407

    Article  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Eco 55:21–37

    Article  Google Scholar 

  • Hallmann J, Kloepper JW, Rodriguez-Kabana R, Sikora RA (1995) Endophytic rhizobacteria as antagonists of Meloidogyne incognita on cucumber. Phytopathology 85:1136

    Google Scholar 

  • Hebbar KP, Atkinson D, Tucker W, Dart PJ (1992) Suppression Fusarium moniliforme by maize root-associated Pseudomonas cepacia. Soil Biol Biochem 24:1009–1020

    Article  Google Scholar 

  • Hebbar KP, Martel MH, Heulin T (1998) Suppression of pre- and post emergence damping off in corn by Burkholderia cepacia. Eur J Plant Pathol 104:29–36

    Article  Google Scholar 

  • Heydari A, Misaghi IJ (1998) Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils. Plant Soil 202:109–116

    Article  CAS  Google Scholar 

  • Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129:117–125

    Article  CAS  Google Scholar 

  • Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Cell Mol Life Sci 50:897–905

    Article  Google Scholar 

  • Hollis JP (1951) Bacteria in healthy potato tissue. Phytopathology 41:350–366

    Google Scholar 

  • Holmes A, Govan J, Goldstein R (1998) The agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4:221–227

    Article  CAS  Google Scholar 

  • Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Huang LJ, Su XH (2003) The Advance of Canker Disease-Resistance Breeding in Poplar. World Forestry Res 16:49–53 (in Chinese)

    Google Scholar 

  • Hwang J, Chilton WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25:56–63

    Article  CAS  Google Scholar 

  • Kim PI, Chung KC (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett 234:177–183

    Article  CAS  Google Scholar 

  • Kloepper JW, Scher FM, Laliberte M, Tipping B (1986) Emergence-promoting rhizobacteria: description, implications for agriculture. In: Swinburne TR (ed) Iron, siderophores, and plant disease. Plenum Press, New York, pp 155–164

    Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219

    Article  Google Scholar 

  • Li W, Roberts DP, Dery PD, Meyer SLF, Lohrke S, Lumsden RD, Hebbar KP (2002) Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21:129–135

    Article  Google Scholar 

  • Mahenthiralingam E, Vandamme P (2005) Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217

    Article  CAS  Google Scholar 

  • Mahenthiralingam E, Simpson DA, Speert DP (1997) Identification and characterization of a novel DNA marker associated with epidemic strains of Burkholderia cepacia recovered from patients with cystic fibrosis. J Clin Microbiol 35:808–816

    CAS  Google Scholar 

  • Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P (2000) DNA-based diagnostic approaches for the identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholdria multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbio 38:3165–3173

    CAS  Google Scholar 

  • Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  CAS  Google Scholar 

  • McKevitt AI, Bajaksouzian S, Klinger JD, Woods DE (1989) Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun 57:771–778

    CAS  Google Scholar 

  • Minaxi, Saxena J (2010) Characterization of Pseudomonas aeruginosa RM-3 as a Potential Biocontrol Agent. Mycopathologia 170:181–193

    Article  CAS  Google Scholar 

  • Mukhopadhyay NK, Garrison NK, Hinton DM, Bacon CW, Khush GS, Pan MJ, Rademan S, Kuner K, Hastings JW (1997) Ultrastructural studies on the colonisation of banana tissue and Fusarium oxysporum f. sp. cubense race 4 by the endophytic bacterium Burkholeria cepacia. J Phytopathol 145:479–486

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ogawa K, Yoshida N, Kariya K, Ohnishi C, Ikeda R (2002) Purification and characterization of a novel chitinase from Burkholderia cepacia strain KH2 isolated from the bed log of Lentinus edodes, Shiitake mushroom. J Gen Appl Microbiol 48:25–33

    Article  CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–92

    CAS  Google Scholar 

  • Parka M, Kima C, Yanga J, Leea H, Shina W, Kimb S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  Google Scholar 

  • Parke JL (1990) Population dynamics of Pseudomonas cepacia in the pea spermosphere in relation to biocontrol of Pythium. Phytopathology 80:1307–1311

    Article  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  CAS  Google Scholar 

  • Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, Sykes RB (1984) Cepacin A and Cepacin B, two new antibiotics produced by Pseudomonas cepacia. J Antibiot 37:431–440

    CAS  Google Scholar 

  • Payne GW, Vandamme P, Morgan SH, LiPuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E (2005) Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71:3917–3927

    Article  CAS  Google Scholar 

  • Perin L, Mart′ınez-Aguilar L, Castro-Gonz′alez P, Estrada-de LSP, Cabellos-Avelar T, Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110

    Article  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Quan CS, Zheng W, Liu Q, Ohta Y, Fan SD (2006) Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Biocontrol 72(6):1276–1284

    CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton Leeuw Int J G 81:537–547

    Article  CAS  Google Scholar 

  • Richardson J, Stead DE, Coutts RHA (2001) Incidence of the cblA major subunit pilin gene among Burkholderia species. FEMS Microbiol Lett 196:61–66

    Article  CAS  Google Scholar 

  • Romero D, Pérez-García A, Rivera ME, Cazorla FM, Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64:263–269

    Article  CAS  Google Scholar 

  • Sajjan US, Sun L, Goldstein R, Forstner JF (1995a) Cable (Cbl) Type II Pili of Cystic Fibrosis-Associated Burkholderia (Pseudomonas) cepacia: Nucleotide Sequence of the cblA Major Subunit Pilin Gene and Novel Morphology of the Assembled Appendage Fibers. J Bacteriol 177:1030–1038

    CAS  Google Scholar 

  • Sajjan US, Sun L, Goldstein R, Forstner JF (1995b) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bact 47:1188–1200

    Google Scholar 

  • Sambrook J, Fritsch ED, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 155–164

    Google Scholar 

  • Segonds C, Heulin T, Marty N, Chabanon G (1999) Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 37:2201–2208

    CAS  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  Google Scholar 

  • Sijam K, Dikin A (2005) Biochemical and physiologica characterization of Burkholderia cepacia as biologica control agent. Int J Agri Biol 7:385–388

    Google Scholar 

  • Singh RK, Mishra RPM, Jaiswal HK, Kumar V, Pandey SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:117–122

    Article  CAS  Google Scholar 

  • Sokol PA, Lewis CT, Dennis JJ (1992) Isolation of a novel siderophore from Pseudomonas cepacia. J Med Microbiol 36:184–189

    Article  CAS  Google Scholar 

  • Speert DP (2001) Understanding Burkholderia cepacia: epidemiology, genomovars, and virulence. Infect Med 18:49–56

    Google Scholar 

  • Steve PB, Laura SS, Donald EW, Dennis EO, Pamela AS (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infec Immun 71:5306–5313

    Article  Google Scholar 

  • Stone JK, Bacon CW, White JJF (2000) An overview of endophytic microbes: Endophytism defined. Dekker, New York, pp 3–30

    Google Scholar 

  • Tahtamouni MEW, Hameed KM, Saadoun IM (2006) Biological control of Sclerotinia sclerotiorum using indigenous chitolytic actinomycetes in Jordan. Plant Pathol J 22:107–114

    Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysacchatide interaction in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microb 43:777–780

    CAS  Google Scholar 

  • Tervet IW, Hollis JP (1948) Bacteria in the storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  • Thomas MS (2008) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 21:105–106

    Article  CAS  Google Scholar 

  • Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JR (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bact 47:1188–1200

    Article  CAS  Google Scholar 

  • Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma JJ, Speert DP, Govan JR, Mahenthiralingam E (2002) Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Mic 33:143–149

    Article  CAS  Google Scholar 

  • Vandamme P, Holmes B, Coenye T, Goris J, Mahenthiralingamc E, LiPuma JJ, Govan JR (2003) Burkholderia cenocepacia sp. nov.—a new twist to an old story. Res Microbiol 154:91–96

    Article  Google Scholar 

  • Vermis K, Coenye T, LiPuma JJ, Mahenthiralingam E, Nelis HJ, Vandamme P (2004) Proposal to accommodate Burkholderia capecia genomovar VI as Burkholderia dolosa sp. Nov., Int J Syst Evol Micr 54:689–691

    Article  CAS  Google Scholar 

  • Wang Y, Wu XQ (2008) Study on several kinds of poplar canker disease and the pathogenicity of the pathogens in north of Jiangsu. J Nanjing Forestry Univ (Natural Sciences Edition) 32:47–50 (in Chinese)

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1992) 16S ribosomal DNA amplification for phylogenetic study. J Bact 173:697–703

    Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia. Microbiol Immunol 36:1251–1275

    CAS  Google Scholar 

  • Yang W, Shen RX, Liu HX (1999) On the Sustainable Management of the Poplar Canker (Dothiorella gregaria Sacc.). J Beijing Forestry Univ 21(14):13–17 (in Chinese)

    Google Scholar 

  • Zeng DP, Chao LJ, Sun FZ, Zhao TC (1999) The ice nucleation active bacteria on poplar trees and their effects in the courses of causing freezing injury and inducing fungous canker. Scientific Silvae Sinicae 35(3):53–57 (in Chinese)

    Google Scholar 

  • Zhang LX, Xie GL (2007) Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol Lett 266:231–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Program for Science and Technology Development of Jiangsu Province (project BE2008393) and the Forestry Public Project of China (201004061 and 201004003-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ren Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J.H., Ye, J.R., Liu, H. et al. Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent. World J Microbiol Biotechnol 27, 2203–2215 (2011). https://doi.org/10.1007/s11274-011-0686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0686-6

Keywords

Navigation