Skip to main content

Cell Replacement Therapy for Huntington’s Disease

  • Chapter
  • First Online:
Stem Cell-based Therapy for Neurodegenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1266))

Abstract

Huntington’s disease (HD) is an inherited neurodegenerative disorder which is characterised by a triad of highly debilitating motor, cognitive, and psychiatric symptoms. While cell death occurs in many brain regions, GABAergic medium spiny neurons (MSNs) in the striatum experience preferential and extensive degeneration. Unlike most neurodegenerative disorders, HD is caused by a single genetic mutation resulting in a CAG repeat expansion and the production of a mutant Huntingtin protein (mHTT). Despite identifying the mutation causative of HD in 1993, there are currently no disease-modifying treatments for HD. One potential strategy for the treatment of HD is the development of cell-based therapies. Cell-based therapies aim to restore neuronal circuitry and function by replacing lost neurons, as well as providing neurotropic support to prevent further degeneration. In order to successfully restore basal ganglia functioning in HD, cell-based therapies would need to reconstitute the complex signalling network disrupted by extensive MSN degeneration. This chapter will discuss the potential use of foetal tissue grafts, pluripotent stem cells, neural stem cells, and somatic cell reprogramming to develop cell-based therapies for treating HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • M.C. An, N. Zhang, G. Scott, D. Montoro, T. Wittkop, S. Mooney, S. Melov, L.M. Ellerby, Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11, 253–263 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.C. An, R.N. O’Brien, N. Zhang, B.N. Patra, M. De La Cruz, A. Ray, L.M. Ellerby, Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system. PLoS Curr, 1 (2014). https://doi.org/10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a

  • C. Arber, S.V. Precious, S. Cambray, J.R. Risner-Janiczek, C. Kelly, Z. Noakes, M. Fjodorova, A. Heuer, M.A. Ungless, T.A. Rodriguez, A.E. Rosser, S.B. Dunnett, M. Li, Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 142, 1375–1386 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L. Aubry, A. Bugi, N. Lefort, F. Rousseau, M. Peschanski, A.L. Perrier, Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc. Natl. Acad. Sci. 105, 16707–16712 (2008)

    Article  CAS  PubMed  Google Scholar 

  • A.C. Bachoud-Levi, P. Remy, J.P. Nguyen, P. Brugieres, J.P. Lefaucheur, C. Bourdet, S. Baudic, V. Gaura, P. Maison, B. Haddad, M.F. Boisse, T. Grandmougin, R. Jeny, P. Bartolomeo, G. Dalla Barba, J.D. Degos, F. Lisovoski, A.M. Ergis, E. Pailhous, P. Cesaro, P. Hantraye, M. Peschanski, Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356, 1975–1979 (2000)

    Article  CAS  PubMed  Google Scholar 

  • A.-C. Bachoud-Lévi, V. Gaura, P. Brugières, J.-P. Lefaucheur, M.-F. Boissé, P. Maison, S. Baudic, M.-J. Ribeiro, C. Bourdet, P. Remy, Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5, 303–309 (2006)

    Article  PubMed  Google Scholar 

  • R.A. Barker, S.L. Mason, T.P. Harrower, R.A. Swain, A.K. Ho, B.J. Sahakian, R. Mathur, S. Elneil, S. Thornton, C. Hurrelbrink, The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 84, 657–665 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • A. Benraiss, S.A. Goldman, Cellular therapy and induced neuronal replacement for Huntington’s disease. Neurotherapeutics 8, 577–590 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Brederlau, A.S. Correia, S.V. Anisimov, M. Elmi, G. Paul, L. Roybon, A. Morizane, F. Bergquist, I. Riebe, U. Nannmark, Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24, 1433–1440 (2006)

    Article  CAS  PubMed  Google Scholar 

  • C. Cepeda, N. Wu, V.M. André, D.M. Cummings, M.S. Levine, The corticostriatal pathway in Huntington’s disease. Prog. Neurobiol. 81, 253–271 (2007)

    Article  CAS  PubMed  Google Scholar 

  • C. Cepeda, V.M. Andre, I. Yamazaki, N. Wu, M. Kleiman-Weiner, M.S. Levine, Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur. J. Neurosci. 27, 671–682 (2008)

    Article  PubMed  Google Scholar 

  • K. Chen, S.M. Hughes, B. Connor, Neural progenitor cells derived from the adult rat subventricular zone: characterization and transplantation. Cell Transplant. 16, 799–810 (2007)

    Article  PubMed  Google Scholar 

  • Y. Chen, R.L. Carter, I.K. Cho, A.W. Chan, Cell-based therapies for Huntington’s disease. Drug Discov. Today 19, 980–984 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G. Cisbani, M. Saint-Pierre, F. Cicchetti, Single-cell suspension methodology favors survival and vascularization of fetal striatal grafts in the YAC128 mouse model of Huntington’s disease. Cell Transplant. 23, 1267–1278 (2014)

    Article  CAS  PubMed  Google Scholar 

  • D.J. Clarke, S.B. Dunnett, O. Isacson, A. Björklund, Striatal grafts in the ibotenic acid-lesioned neostriatum: ultrastructural and immunocytochemical studies. Prog. Brain Res. 78, 47–53 (1988a)

    Article  CAS  PubMed  Google Scholar 

  • D.J. Clarke, S.B. Dunnett, O. Isacson, D.J.S. Sirinathsinghji, A. Björklund, Striatal grafts in rats with unilateral neostriatal lesions—I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience 24, 791–801 (1988b)

    Article  CAS  PubMed  Google Scholar 

  • P. Dayalu, R.L. Albin, Huntington disease: pathogenesis and treatment. Neurol. Clin. 33, 101–114 (2015)

    Article  PubMed  Google Scholar 

  • A.W. Deckel, T.H. Moran, J.T. Coyle, P.R. Sanberg, R.G. Robinson, Anatomical predictors of behavioral recovery following fetal striatal transplants. Brain Res. 365, 249–258 (1986)

    Article  CAS  PubMed  Google Scholar 

  • A. Delli Carri, M. Onorati, M.J. Lelos, V. Castiglioni, A. Faedo, R. Menon, S. Camnasio, R. Vuono, P. Spaiardi, F. Talpo, M. Toselli, G. Martino, R.A. Barker, S.B. Dunnett, G. Biella, E. Cattaneo, Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140, 301–312 (2013)

    Article  PubMed  CAS  Google Scholar 

  • S.B. Dunnett, O. Isacson, D.J.S. Sirinathsinghji, D.J. Clarke, A. Björklund, Striatal grafts in rats with unilateral neostriatal lesions—III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24, 813–820 (1988a)

    Article  CAS  PubMed  Google Scholar 

  • S.B. Dunnett, O. Isacson, D.J.S. Sirinathsinghji, D.J. Clarke, A. Björklund, Striatal grafts in the ibotenic acid-lesioned neostriatum: functional studies. Prog. Brain Res. 78, 39–45 (1988b)

    Article  CAS  PubMed  Google Scholar 

  • S.B. Dunnett, F. Nathwani, A. Björklund, The integration and function of striatal grafts. Prog. Brain Res. 127, 345–380 (2000)

    Article  CAS  PubMed  Google Scholar 

  • M. Farrington, T.G. Wreghitt, A.M.L. Lever, S.B. Dunnett, A.E. Rosser, R.A. Barker, Neural transplantation in Huntington’s disease: the NEST-UK donor tissue microbiological screening program and review of the literature. Cell Transplant. 15, 279–294 (2006)

    Article  CAS  PubMed  Google Scholar 

  • T.B. Freeman, R.A. Hauser, A.E. Willing, T. Zigova, P.R. Sanberg, S. Saporta, Transplantation of human fetal striatal tissue in Huntington’s disease: rationale for clinical studies, in Neural Transplantation in Neurodegenerative Disease: Current Status and New Directions, Novartis Foundation Symposium 231, (Wiley, Chichester, 2000a), pp. 129–144

    Google Scholar 

  • T.B. Freeman, F. Cicchetti, R.A. Hauser, T.W. Deacon, X.J. Li, S.M. Hersch, G.M. Nauert, P.R. Sanberg, J.H. Kordower, S. Saporta, O. Isacson, Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc. Natl. Acad. Sci. U. S. A. 97, 13877–13882 (2000b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Furtado, V. Sossi, R.A. Hauser, A. Samii, M. Schulzer, C.B. Murphy, T.B. Freeman, A.J. Stoessl, Positron emission tomography after fetal transplantation in Huntington’s disease. Ann. Neurol. 58, 331–337 (2005)

    Article  PubMed  Google Scholar 

  • P. Gallina, M. Paganini, A. Di Rita, L. Lombardini, M. Moretti, G.B. Vannelli, N. Di Lorenzo, Human fetal striatal transplantation in Huntington’s disease: a refinement of the stereotactic procedure. Stereotact. Funct. Neurosurg. 86, 308–313 (2008)

    Article  PubMed  Google Scholar 

  • V. Gaura, A.C. Bachoud-Lévi, M.J. Ribeiro, J.P. Nguyen, V. Frouin, S. Baudic, P. Brugières, J.F. Mangin, M.F. Boissé, S. Palfi, Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 127, 65–72 (2004)

    Article  PubMed  Google Scholar 

  • L.R. Gauthier, B.C. Charrin, M. Borrell-Pagès, J.P. Dompierre, H. Rangone, F.P. Cordelières, J. De Mey, M.E. MacDonald, V. Leßmann, S. Humbert, Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004)

    Article  CAS  PubMed  Google Scholar 

  • R.J. Gordon, A.S. Tattersfield, E.M. Vazey, A.P. Kells, A.L. McGregor, S.M. Hughes, B. Connor, Temporal profile of subventricular zone progenitor cell migration following quinolinic acid–induced striatal cell loss. Neuroscience 146, 1704–1718 (2007)

    Article  CAS  PubMed  Google Scholar 

  • R.J. Gordon, A.L. McGregor, B. Connor, Chemokines direct neural progenitor cell migration following striatal cell loss. Mol. Cell. Neurosci. 41, 219–232 (2009)

    Article  CAS  PubMed  Google Scholar 

  • X. Guo, M.-H. Disatnik, M. Monbureau, M. Shamloo, D. Mochly-Rosen, X. Qi, Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration. J. Clin. Invest. 123, 5371 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.D. Ha, J. Jankovic, Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad. Med. 123, 116–121 (2011)

    Article  PubMed  Google Scholar 

  • R.A. Hauser, S. Furtado, C.R. Cimino, H. Delgado, S. Eichler, S. Schwartz, D. Scott, G.M. Nauert, E. Soety, V. Sossi, Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58, 687–695 (2002)

    Article  CAS  PubMed  Google Scholar 

  • O. Isacson, X.O. Breakefield, Benefits and risks of hosting animal cells in the human brain. Nat. Med. 3, 964–969 (1997)

    Article  CAS  PubMed  Google Scholar 

  • O. Isacson, S.B. Dunnett, A. Björklund, Graft-induced behavioral recovery in an animal model of Huntington disease. Proc. Natl. Acad. Sci. 83, 2728–2732 (1986)

    Article  CAS  PubMed  Google Scholar 

  • I. Jeon, N. Lee, J.-Y. Li, I.-H. Park, K.S. Park, J. Moon, S.H. Shim, C. Choi, D.-J. Chang, J. Kwon, S.-H. Oh, D.A. Shin, H.S. Kim, J.T. Do, D.R. Lee, M. Kim, K.-S. Kang, G.Q. Daley, P. Brundin, J. Song, Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30, 2054–2062 (2012)

    Article  CAS  PubMed  Google Scholar 

  • A.J. Joannides, D.J. Webber, O. Raineteau, C. Kelly, K.A. Irvine, C. Watts, A.E. Rosser, P.J. Kemp, W.F. Blakemore, A. Compston, M.A. Caldwell, N.D. Allen, S. Chandran, Environmental signals regulate lineage choice and temporal maturation of neural stem cells from human embryonic stem cells. Brain 130, 1263–1275 (2007)

    Article  PubMed  Google Scholar 

  • V. Johann, J. Schiefer, C. Sass, J. Mey, G. Brook, A. Krüttgen, C. Schlangen, C. Bernreuther, M. Schachner, M. Dihné, Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease. Exp. Brain Res. 177, 458–470 (2007)

    Article  PubMed  Google Scholar 

  • K.S. Jones, B. Connor, Proneural transcription factors Dlx2 and Pax6 are altered in adult SVZ neural precursor cells following striatal cell loss. Mol. Cell. Neurosci. 47, 53–60 (2011)

    Article  CAS  PubMed  Google Scholar 

  • K.S. Jones, B.J. Connor, The effect of pro-neurogenic gene expression on adult subventricular zone precursor cell recruitment and fate determination after excitotoxic brain injury. J. Stem Cells Regen. Med 12, 25 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • T.A. Juopperi, W.R. Kim, C.-H. Chiang, H. Yu, R.L. Margolis, C.A. Ross, G. Ming, H. Song, Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol. Brain 5, 17 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.L. Kendall, F.D. Rayment, E.M. Torres, H.F. Baker, R.M. Ridley, S.B. Dunnet, Functional integration of striatal allografts in a primate model of Huntington’s disease. Nat. Med. 4, 727–729 (1998)

    Article  CAS  PubMed  Google Scholar 

  • A. Klein, E.L. Lane, S.B. Dunnett, Brain repair in a unilateral rat model of Huntington’s disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant. 22, 1735–1751 (2013)

    Article  PubMed  Google Scholar 

  • P. Krystkowiak, V. Gaura, M. Labalette, A. Rialland, P. Remy, M. Peschanski, A.-C. Bachoud-Lévi, Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS One 2, e166 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • I. Kulbatski, Stem/precursor cell-based CNS therapy: the importance of circumventing immune suppression by transplanting autologous cells. Stem Cell Rev. 6, 405–410 (2010)

    Article  Google Scholar 

  • C. Landles, G.P. Bates, Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Rep. 5, 958–963 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.-T. Lee, K. Chu, J.-E. Park, K. Lee, L. Kang, S.U. Kim, M. Kim, Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci. Res. 52, 243–249 (2005)

    Article  CAS  PubMed  Google Scholar 

  • S.-T. Lee, J.-E. Park, K. Lee, L. Kang, K. Chu, S.U. Kim, M. Kim, J.-K. Roh, Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington’s disease. J. Neurosci. Methods 152, 250–254 (2006)

    Article  CAS  PubMed  Google Scholar 

  • L. Ma, B. Hu, Y. Liu, S.C. Vermilyea, H. Liu, L. Gao, Y. Sun, X. Zhang, S.-C. Zhang, Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10, 455–464 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • V.B. Mattis, C.N. Svendsen, Modeling Huntingtons disease with patient-derived neurons. Brain Res. 1656, 76 (2015). https://doi.org/10.1016/j.brainres.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  • J.L. McBride, S.P. Behrstock, E.Y. Chen, R.J. Jakel, I. Siegel, C.N. Svendsen, J.H. Kordower, Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J. Comp. Neurol. 475, 211–219 (2004)

    Article  PubMed  Google Scholar 

  • R.R. Mitchell, E. Szabo, Y.D. Benoit, D.T. Case, R. Mechael, J. Alamilla, J.H. Lee, A. Fiebig-Comyn, D.C. Gillespie, M. Bhatia, Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells Dev. 23, 1937–1946 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N. Nakao, T. Itakura, Fetal tissue transplants in animal models of Huntington’s disease: the effects on damaged neuronal circuitry and behavioral deficits. Prog. Neurobiol. 61, 313–338 (2000)

    Article  CAS  PubMed  Google Scholar 

  • I. Nasonkin, V. Mahairaki, L. Xu, G. Hatfield, B.J. Cummings, C. Eberhart, D.K. Ryugo, D. Maric, E. Bar, V.E. Koliatsos, Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum. Stem Cells 27, 2414–2426 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C. Nicoleau, C. Varela, C. Bonnefond, Y. Maury, A. Bugi, L. Aubry, P. Viegas, F. Bourgois-Rocha, M. Peschanski, A.L. Perrier, Embryonic stem cells neural differentiation qualifies the role of Wnt/beta-catenin signals in human telencephalic specification and regionalization. Stem Cells 31, 1763–1774 (2013)

    Article  CAS  PubMed  Google Scholar 

  • S. Palfi, F. Condé, D. Riche, E. Brouillet, C. Dautry, V. Mittoux, A. Chibois, M. Peschanski, P. Hantraye, Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat. Med. 4, 963–966 (1998)

    Article  CAS  PubMed  Google Scholar 

  • M. Pritzel, O. Isacson, P. Brundin, L. Wiklund, A. Björklund, Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp. Brain Res. 65, 112–126 (1986)

    Article  CAS  PubMed  Google Scholar 

  • I. Reuter, Y.F. Tai, N. Pavese, K.R. Chaudhuri, S. Mason, C.E. Polkey, C. Clough, D.J. Brooks, R.A. Barker, P. Piccini, Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 79, 948–951 (2008)

    Article  CAS  PubMed  Google Scholar 

  • K.L. Ring, L.M. Tong, M.E. Balestra, R. Javier, Y. Andrews-Zwilling, G. Li, D. Walker, W.R. Zhang, A.C. Kreitzer, Y. Huang, Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100–109 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C.A. Ross, S.J. Tabrizi, Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10, 83–98 (2011)

    Article  CAS  PubMed  Google Scholar 

  • A.L. Ross, D.E. Leder, J. Weiss, J. Izakovic, J.M. Grichnik, Genomic instability in cultured stem cells: associated risks and underlying mechanisms. Regen. Med. 6, 653–662 (2011)

    Article  CAS  PubMed  Google Scholar 

  • A.E. Rosser, R.A. Barker, T. Harrower, C. Watts, M. Farrington, A.K. Ho, R.M. Burnstein, D.K. Menon, J.H. Gillard, J. Pickard, Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J. Neurol. Neurosurg. Psychiatry 73, 678–685 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.K. Ryu, J. Kim, S.J. Cho, K. Hatori, A. Nagai, H.B. Choi, M.C. Lee, J.G. McLarnon, S.U. Kim, Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol. Dis. 16, 68–77 (2004)

    Article  CAS  PubMed  Google Scholar 

  • H. Sakahira, P. Breuer, M.K. Hayer-Hartl, F.U. Hartl, Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. U. S. A. 99, 16412–16418 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D.J. Sirinathsinghji, S.B. Dunnett, O. Isacson, D.J. Clarke, K. Kendrick, A. Bjorklund, Striatal grafts in rats with unilateral neostriatal lesions—II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24, 803–811 (1988)

    Article  CAS  PubMed  Google Scholar 

  • J. Song, S.T. Lee, W. Kang, J.E. Park, K. Chu, S.E. Lee, T. Hwang, H. Chung, M. Kim, Human embryonic stem cell-derived neural precursor transplants attenuate apomorphine-induced rotational behavior in rats with unilateral quinolinic acid lesions. Neurosci. Lett. 423, 58–61 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Y. Sun, A. Savanenin, P.H. Reddy, Y.F. Liu, Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J. Biol. Chem. 276, 24713–24718 (2001)

    Article  CAS  PubMed  Google Scholar 

  • K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  Google Scholar 

  • K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  • T.S. Tang, E. Slow, V. Lupu, I.G. Stavrovskaya, M. Sugimori, R. Llinas, B.S. Kristal, M.R. Hayden, I. Bezprozvanny, Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc. Natl. Acad. Sci. U. S. A. 102, 2602–2607 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993)

    Article  Google Scholar 

  • E.M. Vazey, B. Connor, Differential fate and functional outcome of lithium chloride primed adult neural progenitor cell transplants in a rat model of Huntington disease. Stem Cell Res Ther 1, 41 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E.M. Vazey, K. Chen, S.M. Hughes, B. Connor, Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp. Neurol. 199, 384–396 (2006)

    Article  PubMed  Google Scholar 

  • E.M. Vazey, M. Dottori, P. Jamshidi, D. Tomas, M.F. Pera, M. Horne, B. Connor, Comparison of transplant efficiency between spontaneously derived and noggin-primed human embryonic stem cell neural precursors in the quinolinic acid rat model of Huntington’s disease. Cell Transplant. 19, 1055–1062 (2010)

    Article  PubMed  Google Scholar 

  • M.B. Victor, M. Richner, T.O. Hermanstyne, J.L. Ransdell, C. Sobieski, P.-Y. Deng, V.A. Klyachko, J.M. Nerbonne, A.S. Yoo, Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84, 311–323 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P. Weydt, S.M. Soyal, C. Gellera, S. DiDonato, C. Weidinger, H. Oberkofler, G.B. Landwehrmeyer, W. Patsch, The gene coding for PGC-1α modifies age at onset in Huntington’s. Mol. Neurodegener. 4, 3 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • C. Zuccato, M. Tartari, A. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella, B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, E. Cattaneo, Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 35, 76–83 (2003)

    Article  CAS  PubMed  Google Scholar 

  • C. Zuccato, M. Marullo, P. Conforti, M.E. MacDonald, M. Tartari, E. Cattaneo, Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol. 18, 225–238 (2008)

    Article  CAS  PubMed  Google Scholar 

  • C. Zuccato, M. Valenza, E. Cattaneo, Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev. 90, 905–981 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwen Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monk, R., Connor, B. (2020). Cell Replacement Therapy for Huntington’s Disease. In: Han, F., Lu, P.(. (eds) Stem Cell-based Therapy for Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1266. Springer, Singapore. https://doi.org/10.1007/978-981-15-4370-8_5

Download citation

Publish with us

Policies and ethics