Skip to main content

Air Gap Coupled Microstrip Antenna for K/Ka Band Wireless Applications

  • Conference paper
  • First Online:
Microelectronics, Electromagnetics and Telecommunications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 655))

Abstract

A novel air gap coupled microstrip patch antenna is proposed for K/Ka band wireless applications. The antenna consists of defected ground structure and three-layer stacking of two FR4-epoxy and one air gap with two rectangular patches layered vertically with L-shaped slot. The dimensions of the antenna are 20 × 20 × 4 mm3. The proposed antenna operates in the frequency ranges of 16.89–33.89 GHz which covers the total K-band (18–26.5 GHz) and partial Ka band (26.5–40 GHz). The designed antenna is simulated by using HFSS EM simulator. The simulation result shows the proposed antenna gain of 9.34 dB and radiation efficiency of 76%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kraus JD, Marhefka RJ, Khan AS, Antenna and wave propagation, 4th edn, pp 500–519

    Google Scholar 

  2. Mishra B, Singh V, Singh RK, Singh N, Singh R, A compact UWB patch antenna with defected ground for Ku/K band application. https://doi.org/10.1002/mop.30911

  3. Bhadouria AS, Kumar M (2014) Wide Ku-band microstrip patch antenna using defected patch and ground. In: International conference on advanced engineering technology research (ICAETR—2014), IEEE, pp 1–5

    Google Scholar 

  4. Matin MA, Sharif BS, Tsimenidis CC (2011) Broadband stacked microstrip antennas with different radiating patch. Wirel Pers Commun 56:637–648

    Article  Google Scholar 

  5. Patel AK, Jaiswal K, Pandey AK, Yadav S, Srivastava K, Singh R (2019) A compact inverted V-shaped slotted triple and wideband patch antenna for Ku, K, and Ka band applications. In: RTC2E-LNEE-524, pp 59–67

    Google Scholar 

  6. Khandelwal MK, Kanaujia BK, Dwari S, Kumar S, Gautam AK (2014) Bandwidth enhancement and cross-polarization suppression in ultra wideband microstrip antenna with defected ground plane. Microw Opt Technol Lett 56:2141–2146

    Article  Google Scholar 

  7. Tan B-K, Withington S, Yassin G (2016) A compact microstrip-fed planar dual-dipole antenna for broadband applications. IEEE Antennas Wirel Propag Lett 15:593–596

    Google Scholar 

  8. Prasad PC, Chattoraj N (2013) Design of compact Ku band microstrip antenna for satellite communication. In: International conference on communicational signal process IEEE, pp 196–200

    Google Scholar 

  9. Khandelwal MK, Kanaujia BK, Dwari S, Kumar S (2013) Design and analysis of microstrip DGS patch antenna with enhanced bandwidth for Ku Band applications. In: International conference microwave photonics, IEEE, pp 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Ravi Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravi Kumar, K.S., Singh, Y., Vinay, K.P. (2021). Air Gap Coupled Microstrip Antenna for K/Ka Band Wireless Applications. In: Chowdary, P., Chakravarthy, V., Anguera, J., Satapathy, S., Bhateja, V. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-15-3828-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3828-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3827-8

  • Online ISBN: 978-981-15-3828-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics