Skip to main content
Log in

Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An attempt is made to improve the impedance bandwidth (S11) of a microstrip antenna by means of the gap-coupling method, yielding a bandwidth of 97.88% for the gap-coupled rectangular microstrip antenna (GC-RMSA) compared with 7.67% for the direct-coupled rectangular microstrip antenna with all dimensions the same. The maximum gain of the proposed (GC-RMSA) design is 6.725 dB with antenna efficiency of 99.86%. The proposed antenna design is analyzed using the IE3D simulator. The microstrip line feed technique is used to energize the antenna, and its performance as a function of the gap between the elements (g) and the width of the feed strip (W) is investigated. The results show that the impedance bandwidth of the gap-coupled antenna depends on the coupling gap between the elements; indeed, as the gap (g) is increased up to a certain level, the bandwidth of the proposed antenna increases, resulting in a wideband characteristic. However, after a certain value of the gap (g), the bandwidth decreases due to spurious radiation, and the antenna characteristic changes from wide to dual band with a corresponding decrease in the bandwidth. The proposed antenna design covers the frequency range from 2.093 to 6.105 GHz, including the C-band, S-band uplink and downlink frequencies, Wi-Fi, Bluetooth, WLAN, and IEEE (a/b/g) standard applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Deschamps, G.A.: Microstrip microwave antennas. Presented at the 3rd USAF symposium on antennas, vol. 1, pp. 189–195 (1953)

  2. Munson, R.E., Krutsinger, J.K.: Single slot cavity antennas assembly, U.S. patent no. 3713162 (1973)

  3. Munson, R.E.: Conformal microstrip antennas and microstrip phased arrays. IEEE Trans. Antennas Propag. 23, 74–78 (1974)

    Article  Google Scholar 

  4. Howell, J.Q.: Microstrip antenna. IEEE Trans. Antennas Propag. 23(1), 90–93 (1975)

    Article  Google Scholar 

  5. Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham (1980)

    Google Scholar 

  6. Kumar, G., Ray, K.P.: Broadband Microstrip Antennas. Artech House Antennas and Propagation library Ingeniería Electrónica, Dedham (2002)

    Google Scholar 

  7. Kamakshi, K., Singh, A., Aneesh, M., Ansari, J.A.: Novel design of microstrip antenna with improved bandwidth. Int. J. Microw. Sci. Technol. 2014, 659592 (2014)

    Article  Google Scholar 

  8. Alkanhal, M.A., Sheta, A.F.: A novel dual-band reconfigurable square-ring microstrip antenna. Prog. Electromagn. Res. PIER 70, 337–349 (2007)

    Article  Google Scholar 

  9. Shivnarayan, Vishvakarma, B.R.: Analysis of notch-loaded patch for dual-band operation. Indian J. Radio Space Phys. 35, 435–442 (2006)

    Google Scholar 

  10. Abutarboush, H.F., Nilavalan, R., Cheung, S.W., Nasr, K.M., Peter, T., Budimir, D., Raweshidy, H.A.: A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propag. 60(1), 36–43 (2012)

    Article  Google Scholar 

  11. Hu, W., Yin, Y.Z., Yang, X., Ren, X.S.: Compact printed antenna with h shaped stub for dual-band operation. Electron. Lett. 46(25), 1644–1645 (2010)

    Article  Google Scholar 

  12. Ansari, J.A., Singh, P., Dubey, S.K., Khan, R.U., Vishvakarma, B.R.: H-shaped stacked patch antenna for dual band operation. Prog. Electromagn. Res. B 5, 291–302 (2008)

    Article  Google Scholar 

  13. Ang, B.K., Chung, B.K.: A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communication. Prog. Electromagn. Res. 75, 397–407 (2007)

    Article  Google Scholar 

  14. Wi, S.H., Lee, Y.S., Yook, J.G.: Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55(4), 1196–1199 (2007)

    Article  Google Scholar 

  15. Mishra, B., Singh, V., Singh, R.: Gap coupled swastika-shaped patch antenna for X and Ku band applications. In: Optical and Wireless Technologies, Lecture Notes in Electrical Engineering, vol. 546, pp. 449–455. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6159-3_47

  16. Verma, M.K., Kanaujia, B.K., Saini, J.P., Saini, P.: A novel circularly polarized gap-coupled wideband antenna with DGS for X/Ku-band applications. Electromagnetics 39(3), 186–197 (2019)

    Article  Google Scholar 

  17. Gautam, A.K., Vishvakarma, B.R.: Analysis of varactor loaded active microstrip antenna. Microw. Opt. Technol. Lett. 49(2), 416–421 (2007)

    Article  Google Scholar 

  18. Kumar, P., Singh, G.: Gap coupling a potential method for enhancing the bandwidth of microstrip antennas. Adv. Comput. Tech. Electromagn. 2012, 1–6 (2012). https://doi.org/10.5899/2012/acte-00110

    Article  Google Scholar 

  19. Deshmukh, A., Ray, K.P.: Proximity fed gap-coupled half E-shaped microstrip antenna array. Indian Acad. Sci. 40(1), 75–87 (2015)

    Google Scholar 

  20. Asthana, A., Vishvakarma, B.R.: Analysis of gap coupled microstrip antenna. Int. J. Electron. 88(6), 707–718 (2001)

    Article  Google Scholar 

  21. Nour, A.A., Fezai, F., Thevenot, M., Arnaud, E., Monediere, T.: A circularly polarized square microstrip parasitic antenna with an improved bandwidth. Microw. Opt. Technol. Lett. 58(3), 597–602 (2016)

    Article  Google Scholar 

  22. Singh, V., Mishra, B., Singh, R.: Anchor shape gap coupled patch antenna for WiMax and WLAN application. Int. J. Comput. Math. Electr. Electron. Eng. 38(1), 263–286 (2019)

    Article  Google Scholar 

  23. Jagtap, S.D., Thakare, R., Gupta, R.K.: Low profile high gain wideband circularly polarized antennas using hexagon shape parasitic patches. Prog. Electromagn. Res. C 95, 15–27 (2019)

    Article  Google Scholar 

  24. Altaf, A., Yang, Y., Lee, K.Y., Hwang, K.C.: Wideband circularly polarized spidron fractal slot antenna with an embedded patch. Int. J. Antennas Propag. 2017, 3595620 (2017). https://doi.org/10.1155/2017/3595620

    Article  Google Scholar 

  25. Zhang, J., Lu, W.J., Li, L., Zhu, L., Zhu, H.B.: Wideband dual-mode planar endfire antenna with circular polarisation. Electron. Lett. 52(12), 1000–1001 (2016)

    Article  Google Scholar 

  26. IE3D Electromagnetic Simulation and Optimization Package, version 9.0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanksha Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Srivastava, D.K., Saini, J.P. et al. Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications. J Comput Electron 19, 457–468 (2020). https://doi.org/10.1007/s10825-019-01416-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01416-1

Keywords

Navigation