Skip to main content

Multipartite Interaction of Trichoderma harzianum (MTCC 5179) as Endophyte and a Growth Promoter of Black Pepper (Piper nigrum L.)

  • Chapter
  • First Online:
Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 924 Accesses

Abstract

Species of Trichoderma are used to control soilborne diseases as this versatile organism can adapt itself to varied ecological niche and utilize available nutrients. When it colonizes the plant root, entire microbial communities are altered, and the microbial community helps the plant by solubilizing the nutrients, secreting growth hormones, and preventing harmful effects of pathogens. Though all these effects were attributed to Trichoderma, recent metagenomic studies have revealed the complex multipartite interactions in the rhizosphere and inside host cell. Trichoderma species are now acknowledged as endophytes, and the mechanisms involved in suppressing the host defenses are documented.

The comparative genomics of Trichoderma species revealed the presence of genes in these mycoparasites to attack other pathogenic fungi and interact with plants. The advent of new-generation sequencing (NGS) techniques has opened new ways to analyze and find out the community pattern and functions in the soil rhizosphere. Most Trichoderma species function almost similar to the mycorrhiza. When a root is colonized by mycorrhiza, the microbial community changes around the rhizosphere, hence referred to as “mycorrhizosphere effect.” Similarly, metagenomics studies have found the microbial community changes in the rhizosphere of Trichoderma harzianum-applied roots leading to a “trichorhizosphere effect.” Multipartite interaction studies have shown the mechanisms of Trichoderma to maintain the plant metabolism and suppress the plant immunity for its own establishment. Genes mediating beneficial interactions with associated microbes can be manipulated to increase the efficiency of the rhizosphere by the gene editing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O, Kamanu FK, Jamhor SA, Mokhtar NA, Antunes A, Simoes MF, Alam I, Bougouffa S, Lafi FF, Bajic VB, Archer JAC (2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576:626–636

    Article  CAS  PubMed  Google Scholar 

  • Anandaraj M (2000) Diseases of black pepper. In: Ravindran PN (ed) Black pepper Piper nigrum, Medicinal and aromatic plants – industrial profiles. Harwood Academic Publishers, Amsterdam, pp 239–267

    Google Scholar 

  • Anandaraj M, Sarma YR (1994) Effect of vesicular arbuscular mycorrhizae on rooting of black pepper (Piper nigrum L.). J Spices Arom Crops 3:39–42

    Google Scholar 

  • Anandaraj M, Sarma YR (2003) The potential of PGPRs in disease management of Spice crop. In: 6th International PGPR workshop, 5–10 Oct 2003, Calicut, India

    Google Scholar 

  • Anandaraj M, Umadevi P (2017) Multipartite interaction of introduced biocontrol agents in the rhizosphere. In: Fifth National conference on biological control: integrating recent advances in pest and disease management, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India

    Google Scholar 

  • Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 113:1365–1376

    Article  PubMed  Google Scholar 

  • Baroncelli R, Zapparata A, Piaggeschi G, Sarrocco S, Vannacci G (2016) Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announc 4(1):e01747–e01715

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderon AA, Zapata JM, Munoz R, Pedreno MA, Barcelo AR (1993) Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol 124:455–463

    Article  CAS  Google Scholar 

  • Calvet C, Estaun V, Camprubi A (1992) Germination, early mycelia growth and infectivity of a vesicular-arbuscular mycorrhizal fungus in organic substrates. Symbiosis 14:405–411

    Google Scholar 

  • Camprubi A, Calvet C, Estaun V (1995) Growth enhancement of Citrus reshni after inoculation with Glomus intraradices and Trichoderma aureoviridae and associated effects on microbial population and enzyme activity in potting mixer. Plant Soil 173:233–238

    Article  CAS  Google Scholar 

  • Castañeda LE, Barbosa O (2016) Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. Peer J 5:e3098. https://doi.org/10.7717/peerj.3098

    Article  CAS  Google Scholar 

  • Chacon MR, Rodriguez-Galan O, Benitez T, D’Sousa S, Benitez T, Sousa S, Rey M, Llobell A, Delgado-Jarana J (2007) Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol 10:19–27

    CAS  PubMed  Google Scholar 

  • Chem M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Over expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511–520

    Article  CAS  Google Scholar 

  • Dave N, Prajapati K, Patel A, Patel Z, Nandini D, Bariya H (2013) Trichoderma harzianum elicits defense response in Brassica juncea plantlets. Int Res J Biol Sci 2(11):1–10

    Google Scholar 

  • De Jaeger N, Declerck S, de la Providencia IV (2010) Mycoparasitism of arbuscular mycorrhizal fungi: a pathway for the entry of saprotrophic fungi into roots. FEMS Microbiol Ecol 73:312–322

    PubMed  Google Scholar 

  • De Jaeger N, de la Providencia I, Dupre de Boulois H, Declerck S (2011) Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 77:558–567

    Article  PubMed  CAS  Google Scholar 

  • De Souza JT, Bailey BA, Pomella AWV, Erbe EF, Murphy CA, Bae H, Hebbar KP (2008) Colonization of cacao seedlings by Trichoderma stromaticum a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biol Control 46:36–45

    Article  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  CAS  PubMed  Google Scholar 

  • Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4(4):309–314

    Article  CAS  PubMed  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7(5):547–552

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Chen WJ, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  CAS  PubMed  Google Scholar 

  • Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I (1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl Environ Microbiol 65:1428–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perception derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rotballer M, Schimid M (2008) Loenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40. https://doi.org/10.1186/gb-2011-12-4-r40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linderman RG (1998) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ’Omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Obertello M, Pardo A, Ocampo JA, Godeas A (2004) Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza 14:79–84

    Article  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Parman D, D’Souza M et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9. https://doi.org/10.1186/1471-2105-9-386

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma–a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay AN (1987) Biological control of soil-borne plant pathogens by Trichoderma spp. Indian J Mycol Plant Pathol 17:1–10

    Google Scholar 

  • Navazio L, Baldan B, Moscatiello R, Zuppini A, Woo SL, Mariani P, Lorito M (2007) Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol 7:41. https://doi.org/10.1186/1471-2229-7-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Puranik S, Pal RR, More RP, Purohit HJ (2016) Metagenomic approach to characterize soil microbial diversity of Phumdi at Loktak Lake. Water Sci Technol 74(9):2075–2086

    Article  PubMed  Google Scholar 

  • Rajan PP, Sarma YR, Anandaraj M (2002) Management of foot rot disease of black pepper with Trichoderma spp. Indian Phytopathol 55:34–38

    Google Scholar 

  • Shoresh M, Harman GE (2008a) The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signal Behav 3:737–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE (2008b) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol 142:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibi MC (2013) Development of biocontrol consortia for tissue cultured black pepper (Piper nigrum L.,) plants. Dissertation, Mangalore University

    Google Scholar 

  • Simoes MF, Antunes A, Cristiane A, Ottoni CA, Amini MS, Alam I, Alzubaidy H, Mokhtar N, John AC, Archer JAC, Bajic VB (2015) Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea - a metagenomic approach. Genom Proteom Bioinf 13:310–320

    Article  Google Scholar 

  • Srivastava M, Shahid M, Pandey S, Singh A, Kumar V, Gupta S, Maurya M (2014) Trichoderma genome to genomics: a review. Data Mining Genom Proteom 5:3. https://doi.org/10.4172/2153-0602.1000162

    Article  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  CAS  PubMed  Google Scholar 

  • Umadevi P (2018) Microbial community dynamics and modulation of defense responses in black pepper by Trichoderma harzianum. Dissertation, University of Calicut

    Google Scholar 

  • Umadevi P, Anandaraj M (2019) Proteomics analysis of the tripartite interaction between black pepper, Trichoderma harzianum and Phytophthora capsici provides insights into induced systemic resistance mediated by Trichoderma spp. Eur J Plant Pathol 154:1–14

    Article  CAS  Google Scholar 

  • Umadevi P, Anandaraj M, Benjamin S (2017) Endophytic interactions of Trichoderma harzianum in a tropical perennial rhizo – ecosystem. Res J Biotechnol 12(3):22–30

    CAS  Google Scholar 

  • Umadevi P, Anandaraj M, Srivastav V, Benjamin S (2018) Trichoderma harzianum MTCC 5179 impacts the population and functional dynamics of microbial community in the rhizosphere of black pepper (Piper nigrum L.). Braz J Microbiol 49(3):463–470

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Che I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Hansen MA, Hansen LH, Jacquiod S, Sorensen SJ (2014) Bioinformatic approaches reveal metagenomic characterization of soil microbial community. PLoS One 9:e93445. https://doi.org/10.1371/journal.pone.0093445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Ben-hamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. Lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anandaraj, M., Umadevi, P. (2020). Multipartite Interaction of Trichoderma harzianum (MTCC 5179) as Endophyte and a Growth Promoter of Black Pepper (Piper nigrum L.). In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_13

Download citation

Publish with us

Policies and ethics