Skip to main content

Oxide Luminescent Materials

  • Chapter
  • First Online:
Nanostructured Metal Oxides and Devices

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 605 Accesses

Abstract

This chapter gives the reader an insight into the phenomenon of luminescence, the emission kinetics, its intrinsic and extrinsic variations, features of sensitized luminescence, and self-quenching. The merits of photoluminescence as an optical analytical tool are discussed. The industrial display scenario is laid down, with special mention on thin-film electroluminescent displays and its unique features. The shift in the research focus from sulfide-based phosphors to oxide-based light emitters is briefly outlined. Various binary and ternary oxide-based phosphor system matrices are presented in detail. The chapter concludes by highlighting the significant achievements made in related works carried at our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiedemann E (1888) About fluorescence and Phosphorescenz I. Treatise. Ann Phys 270(7):446–463

    Article  Google Scholar 

  2. Vij DR (ed) (1998) Luminescence of solids. Plenum Press, New York, pp 95–132

    Book  Google Scholar 

  3. Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals (trans: Schiffer VV). Springer, New York, pp 146–188

    Google Scholar 

  4. van Eijk CWE (1994) Cross-luminescence. In: International conference on luminescence, pp 936–941

    Google Scholar 

  5. Rack PD, Naman A, Holloway PH, Sun SS, Tuenge RT (1996) Materials used in electroluminescent displays. MRS Bull 21(3):49–58

    Article  CAS  Google Scholar 

  6. Kim JY, Park SH, Jeong T, Bae MJ, Song S, Lee J, Han IT, Jung D, Yu S (2010) Paper as a substrate for inorganic powder electroluminescence devices. IEEE Trans Electron Devices 57(6):1470–1474

    Article  CAS  Google Scholar 

  7. Kim MJ, Shin DW, Young KJ, Park SH, Han IT, Yoo JB (2009) The production of a flexible electroluminescent device on polyethylene terephthalate films using transparent conducting carbon nanotube electrode. Carbon 47(15):3461–3465

    Article  CAS  Google Scholar 

  8. Hirata GA, Mckittrick J, Borja MA, Siqueiros M, Devlin D (1997) Physical properties of Y2O3:Eu luminescent films grown by MOCVD and laser ablation. Appl Surf Sci 113:509–514

    Google Scholar 

  9. Destriau G (1936) Recherches Sur Les Scintillations De Zinc Aux Rayons. J Chim Phys 33:587–625

    Article  CAS  Google Scholar 

  10. Alt PM (1984) Thin-film electroluminescent displays: device characteristics and performance. Proc SID 25(2):123–145

    Google Scholar 

  11. Ono YA (1995) Electroluminescent displays. World Scientific Publishing Co., Singapore, pp 63–67

    Book  Google Scholar 

  12. Keir PD (1999) Fabrication and characterisation of ACTFEL devices. Ph.D. thesis, Oregon State University

    Google Scholar 

  13. Minami T, Miyata T, Takata S, Fukuda I (1991) High-luminance green Zn2SiO4:Mn thin-film electroluminescent devices using an insulating BaTiO3 ceramic sheet. Jpn J Appl Phys 30(1B):L117–L119

    Article  CAS  Google Scholar 

  14. Ouyang X, Kitai AH, Xiao T (1996) Electroluminescence of the oxide thin film phosphors Zn2SiO4 and Y2SiO5. J Appl Phys 79(6):3229–3234

    Article  CAS  Google Scholar 

  15. Stuyven G, Visschere PD, Neyts K, Kitai A (2003) Characterization of the electro-optical behavior of Zn2Si0.5Ge0.5O4:Mn thin-film electroluminescent devices. J Appl Phys 93(8):4622–4627

    Article  CAS  Google Scholar 

  16. Bender JP, Wager JF, Kissick J, Clark BL, Keszler DA (2002) Zn2GeO4:Mn alternating-current thin-film electroluminescent devices. J Lumin 99(4):311–324

    Article  CAS  Google Scholar 

  17. Lou Z, Hao J (2005) Cathodoluminescent characteristics of green-emitting ZnAl2O4:Mn thin-film phosphors. Appl Phys A 80(1):151–154

    Article  CAS  Google Scholar 

  18. Lou Z, Hao J (2005) Cathodoluminescent characteristics of green-emitting ZnAl2O4:Mn thin-film phosphors. Appl Phys A Mater Sci Process 80(1):151–154

    Google Scholar 

  19. Xiao L, He M, Tian Y, Chen Y, Karak T, Zhang L, Wang N (2007) Structure and luminescence properties of new green-emitting phosphor BaAl12O19:Tb. Jpn J Appl Phys 46(9A):5871–5873

    Article  CAS  Google Scholar 

  20. Kim KN, Jung HK, Park HD, Kim D (2002) High luminance of new green emitting phosphor, Mg2SnO4:Mn. J Lumin 99(3):169–173

    Article  CAS  Google Scholar 

  21. Jiang YD, Zhang F, Summers CJ, Wang ZL (1999) Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays. Appl Phys Lett 74(12):1677–1679

    Article  CAS  Google Scholar 

  22. Itoh S, Toki H, Tamura K, Kataoka F (1999) A new red-emitting phosphor, SrTiO3:Pr3+, for low-voltage electron excitation. Jpn J Appl Phys 38(11):6387–6391

    Article  CAS  Google Scholar 

  23. Wellenius P, Suresh A, Muth JF (2008) Bright, low voltage europium doped gallium oxide thin film electroluminescent devices. Appl Phys Lett 92(2):021111–021113

    Article  CAS  Google Scholar 

  24. Minami T, Kobayashi Y, Shirai T, Miyata T, Suzuki S (2002) High-luminance thin film electroluminescent devices using monoclinic Y2O3 phosphor activated with Mn. Jpn J Appl Phys 41(4B):L478–L480

    Article  CAS  Google Scholar 

  25. Minami T, Kobayashi Y, Miyata T, Suzuki S (2002) High-luminance thin-film electroluminescent devices using ((Y2O3)0.6-GeO2)0.4:Mm phosphors. Jpn J Appl Phys 41(5B):L577–L579

    Article  CAS  Google Scholar 

  26. Itoh S, Toki H, Sato Y, Morimoto K, Kishino T (1991) The ZnGa2O4 phosphor for low voltage blue cathodoluminescence. J Electrochem Soc 138(5):1509–1512

    Article  CAS  Google Scholar 

  27. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Chem Soc 82(12):3279–3292

    CAS  Google Scholar 

  28. Omata T, Ueda N, Ueda K, Kawazoe H (1994) New ultraviolet-transport electroconductive oxide, ZnGa2O4 spinel. Appl Phys Lett 64(9):1077–1078

    Article  CAS  Google Scholar 

  29. Yu CF, Lin P (1996) Manganese-activated luminescence in ZnGa2O4. J Appl Phys 79(9):7191–7197

    Article  CAS  Google Scholar 

  30. Uheda K, Maruyama T, Takizawa H, Endo T (1997) Synthesis and long-period phosphorescence of ZnGa2O4:Mn2+ spinel. J Alloys Compd 262–263:60–64

    Article  Google Scholar 

  31. Phani AR, Santucci S, Nardo SD, Lozzi L, Passacantando M, Picozzi P (1998) Preparation and characterization of bulk ZnGa2O4. J Mat Sci 33(15):3969–3973

    Article  CAS  Google Scholar 

  32. Choi SK, Moon HS, Mho SI, Kim TW, Park HL (1998) Tunable color emission in a Zn1−xCdxGa2O4 phosphor and solid solubility of CdGa2O4 in ZnGa2O4. Mat Res Bull 33(5):693–696

    Article  CAS  Google Scholar 

  33. Jeong IK, Park HL, Mho SI (1998) Two self-activated optical centers of blue emission in zinc gallate. Solid State Commun 105(3):179–183

    Article  CAS  Google Scholar 

  34. Safeera TA, Johns N, Mini Krishna K, Sreenivasan PV, Reshmi R, Anila EI (2016) Zinc gallate and its starting materials in solid state reaction route—a comparative study. Mater Chem Phys 181:21–25

    Google Scholar 

  35. Vasile M, Vlazan P, Avram NM (2010) Characterization and optical properties of ZnGa2O4:Eu3+ nanophosphor grown by hydrothermal method. J Alloys Compd 500(2):185–189

    Article  CAS  Google Scholar 

  36. Liu L, Huang J, Cao L, Jianpeng W, Fei J, Ouyang H, Yao C (2013) Influence of temperature on the morphology and photocatalytic activity of ZnGa2O4 crystallites prepared by hydrothermal method. Ceram Int 39(3):3165–3171

    Article  CAS  Google Scholar 

  37. Mingjia L, Ouyan X, Songping W, Ge R, Rui X (2016) A facile hydrothermal route to self-assembled ZnGa2O4 particles and their microwave application. Appl Surf Sci 364:775–782

    Article  CAS  Google Scholar 

  38. Zhang Y, Zhijian W, Geng D, Kang X, Shang M, Li X, Lian H, Cheng Z, Lin J (2018) Full color emission in ZnGa2O4:simultaneous control of the spherical morphology, luminescent and electric properties via hydrothermal approach. Adv Funct Mater 24(42):6581–6593

    Article  CAS  Google Scholar 

  39. Sun M, Li D, Zhang W, Chen Z, Huang H, Li W, He Y, Xianzhi F (2012) Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water. J Solid State Chem 190:135–142

    Article  CAS  Google Scholar 

  40. Yuan Y, Huang J, Weixia T, Huang S (2014) Synthesis of uniform ZnGa2O4 nanoparticles with high photocatalytic activity. J Alloys Compd 616:461–467

    Article  CAS  Google Scholar 

  41. Hussen MK, Dejene FB (2018) Influence of annealing temperature on material properties of red emitting ZnGa2O4:Cr3+ nanostructures. J Sol-Gel Sci Technol 88(2):454–464

    Article  CAS  Google Scholar 

  42. Duan X, Liu J, Yuanchun W, Fapeng Yu, Wang X (2014) Structure and luminescent properties of Co2+/Cr3+ co-doped ZnGa2O4 nanoparticles. J Lumin 153:361–368

    Article  CAS  Google Scholar 

  43. Park JH, Park BW, Choi NS, Jeong YT, Kim JS, Yang JS (2008) Enhancement in cathodoluminescent properties of carbon nanotube-ZnGa2O4:Mn2+ phosphor composites. Electrochem Solid-State Lett 11(2):J12–J14

    Article  CAS  Google Scholar 

  44. Kim JS, Kim JS, Kim TW, Kim SM, Park HL (2005) Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4:Mn2+ phosphor. Appl Phys Lett 86(9):091912–091914

    Article  CAS  Google Scholar 

  45. Shea LE, Datta RK, Brown JJ Jr (1994) Low voltage cathodoluminescence of Mn2+-activated ZnGa2O4. J Electrochem Soc 141(8):2198–2200

    Article  CAS  Google Scholar 

  46. Yu M, Lin J, Zhou YH, Wang SB (2002) Citrate-gel synthesis and luminescent properties of ZnGa2O4 doped with Mn2+ and Eu3+. Mater Lett 56(6):1007–1013

    Article  CAS  Google Scholar 

  47. Tran TK, Park W, Tomm JW, Wagner BK, Jacobsen SM, Summers CJ, Yocom PN, McClelland SK (1995) Photoluminescence properties of ZnGa2O4:Mn powder phosphors. J Appl Phys 78(9):5691–5695

    Article  CAS  Google Scholar 

  48. Poort SHM, Cetin D, Meijerink A, Blasse G (1997) The luminescence of Mn2+-activated ZnGa2O4. J Electrochem Soc 144(6):2179–2183

    Google Scholar 

  49. Lee YE, Norton DP, Budai JD (1999) Enhanced photoluminescence in epitaxial ZnGa2O4:Mn thin-film phosphors using pulsed-laser deposition. Appl Phys Lett 74(21):3155–3157

    Article  CAS  Google Scholar 

  50. Lee YE, Norton DP, Park C, Rouleau CM (2001) Blue photoluminescence in ZnGa2O4 Thin-film phosphors. J Appl Phys 89(3):1653–1656

    Article  CAS  Google Scholar 

  51. Yi SS, Kim IW, Bae JS, Moon BK, Kim SB, Jeong JH (2002) Luminescence characteristics of ZnGa2O4 thin film phosphors grown by pulsed laser deposition. Mater Lett 57(4):904–909

    Article  CAS  Google Scholar 

  52. Lee YE, Norton DP, Budai JD, Rack PD, Peterson J, Potter MD (2002) Photo- and low-voltage cathodoluminescence in lithium zinc gallate blue and green thin-film phosphors. J Appl Phys 91(5):2974–2977

    Article  CAS  Google Scholar 

  53. Jeong JH, Moon BK, Seo HJ, Bae JS, Yi SS, Kim W, Park HL (2003) Enhanced green emission in ZnGa2O4:Mn thin film phosphors by Se doping. Appl Phys Lett 83(7):1346–1348

    Article  CAS  Google Scholar 

  54. Bae JS, Moon BK, Choi BC, Jeong JH, Yi SS, Kim W, Lee JS (2003) Photoluminescence behaviors in ZnGa2O4 thin film phosphors deposited by a pulsed laser ablation. Thin Solid Films 424(2):291–295

    Google Scholar 

  55. Yi SS, Bae JS, Moon BK, Jeong JH, Kim IW, Park HL (2003) Photoluminescence behavior of pulsed laser deposited ZnGa2O4 thin-film phosphors grown on various substrates. Appl Phys A 76(3):433–437

    Article  CAS  Google Scholar 

  56. Jeong JH, Bae JS, Choi BC, Yi SS, Holloway PH (2004) Luminescent characteristics of Se-doped ZnGa2O4:Mn thin film phosphors grown by pulsed laser ablation. J Vac Sci Technol A 22(4):1751–1756

    Article  CAS  Google Scholar 

  57. Bae JS, Shim KS, Moon BK, Choi BC, Jeong JH, Yi SS, Kim JH (2005) Photoluminescence characteristics of ZnGa2O4−xMx:Mn2+ (M = S, Se) thin film phosphors grown by pulsed laser ablation. Thin Solid Films 479(1–2):238–244

    Article  CAS  Google Scholar 

  58. Mini Krishna K, Nisha M, Reshmi R, Manoj R, Asha AS, Jayaraj MK (2005) Electrical and optical properties of ZnGa2O4 thin films deposited by pulsed laser deposition. Mater Forum 29:243–247

    Google Scholar 

  59. Reshmi R, Mini Krishna K, Manoj R, Jayaraj MK (2005) Pulsed laser deposition of ZnGa2O4 phosphor films. Surf Coat Tech 198(1–3):345–349

    Google Scholar 

  60. Ahmad Md I, Kottaisami M, Rama N, Rao MSR, Bhattacharya SS (2006) Thin film luminescence of ZnGa2O4:Mn deposited by PLD. Scripta Mater 54(2):237–240

    Google Scholar 

  61. Hseih IJ, Feng MS, Kuo KT, Lin P (1994) Growth of ZnGa2O4 phosphor by radio frequency magnetron sputtering. J Electrochem Soc 141(6):1617–1621

    Article  Google Scholar 

  62. Chung SM, Kim YJ (2004) Effects of substrates and heat treatment on growing behavior and luminescent characteristics of ZnGa2O4 thin film. J Vac Sci Technol A 22(1):140–145

    Article  CAS  Google Scholar 

  63. Bondar V (2000) Structure and luminescence properties of individual and multi-layer thin-film systems based on oxide phosphors. Mater Sci Engg B 69–70:505–509

    Article  Google Scholar 

  64. Kim YJ, Jeong YH, Kim KD, Kang SG, Lee KG, Han JI, Park YK, Cho KI (1998) Growth and luminescent characteristics of ZnGa2O4 thin film phosphor prepared by radio frequency magnetron sputtering. J Vac Sci Technol B 16(3):1239–1243

    Article  CAS  Google Scholar 

  65. Yang SH, Hsueh TJ, Chang SJ (2005) Cathodoluminescence of a white ZnGa2O4/ZnO phosphor screen. J Electrochem Soc 152(11):H191–H195

    Article  Google Scholar 

  66. Yang SH, Lu CY, Chang SJ (2007) Luminescence enhancement mechanism of ZnGa2O4 phosphor screen with an In2O3 buffer layer. J Electrochem Soc 154(8):J229–J233

    Article  CAS  Google Scholar 

  67. Kim JH, Holloway PH (2004) Enhancement of cathodoluminescence of ZnGa2O4:Mn thin-film phosphor by energetic particle bombardment. Appl Phys Lett 84(12):2070–2072

    Article  CAS  Google Scholar 

  68. Kim JH, Holloway PH (2006) Microstructural differences in thin film ZnGa2O4:Mn phosphor produced by differences in sputtering gas pressure. J Vac Sci Technol A 24(6):2164–2171

    Article  CAS  Google Scholar 

  69. Kim YJ, Chung SM, Jeong YH, Lee YE (2001) Effects of ZnO buffer layer on the luminous properties of thin-film phosphors deposited on ZnO/ITO/glass substrates. J Vac Sci Technol A 19(4):1095–1098

    Article  CAS  Google Scholar 

  70. Chung SM, Han SH, Kim YJ (2005) Characterization of compositional variation and luminescence of ZnGa2O4:Mn thin film phosphor. Mater Lett 59(7):786–789

    Article  CAS  Google Scholar 

  71. Park JH, Lee SH, Kim JS, Park HW, Choi JC, Park HL, Kim GC, Yoo JH (2007) Microstructure-dependent luminescent properties of thin-film ZnGa2O4:Mn2+ phosphors. J Cryst Growth 299(2):369–373

    Article  CAS  Google Scholar 

  72. Choi HW, Hong BJ, Lee SK, Kim KH, Park YS (2007) Cathode luminescence characteristics of ZnGa2O4 phosphor thin films with the doped activator. J Lumin 126(2):359–364

    Article  CAS  Google Scholar 

  73. Yan Z, Koike M, Takei H (1996) Preparation of spinel ZnGa2O4 films on MgO substrates by the solvent evaporation epitaxy method. J Crys Growth 165(1–2):183–186

    Article  CAS  Google Scholar 

  74. Yang SH (2003) Electrophoretic prepared ZnGa2O4 phosphor film for FED. J Electrochem Soc 150(10):H250–H253

    Article  CAS  Google Scholar 

  75. Sei T, Nomura Y, Tsuchiya T (1997) Preparation of ZnGa2O4 thin film by sol-gel process and effect of reduction on its electric conductivity. J Non-Cryst Solids 218:135–138

    Article  CAS  Google Scholar 

  76. Minami T, Takata S, Kuroi Y, Maeno T (1996) New high-luminance thin-film electroluminescent devices using ZnGa2O4 phosphor emitting layers. J Soc Inf Disp 4(2):53–58

    Article  Google Scholar 

  77. Minami T, Kuroi Y, Miyata T, Yamada H, Takata S (1997) ZnGa2O4 as host material for multicolor-emitting phosphor layer of electroluminescent devices. J Lumin 72–74:997–998

    Article  Google Scholar 

  78. Minami T, Maeno T, Kuroi Y, Takata S (1995) High-luminance green-emitting thin-film electroluminescent devices using ZnGa2O4:Mn phosphor. Jpn J Appl Phys 34(6A):L684–L687

    Article  CAS  Google Scholar 

  79. Minami T, Toda H, Miyata T (2001) Oxide phosphor thin-film electroluminescent devices fabricated by magnetron sputtering with rapid thermal annealing. J Vac Sci Technol A 19(4):1742–1746

    Article  CAS  Google Scholar 

  80. Minami T, Miyata T, Sakagami Y (1998) TFEL devices using oxide thin films without vacuum process. Surf Coat Technol 108–109:594–598

    Article  Google Scholar 

  81. Minami T, Kuroi Y, Takata S (1996) Preparation of ZnGa2O4:Mn phosphor thin films as emitting layers for electroluminescent devices. J Vac Sci Technol A 14(3):1736–1740

    Article  CAS  Google Scholar 

  82. Flynn M, Kitai AH (2001) ZnGa2O4:Mn phosphors for thin-film electroluminescent displays exhibiting improved brightness. J Electrochem Soc 148(10):H149–H153

    Article  CAS  Google Scholar 

  83. Kim JS, Lee SG, Park HL, Park JY, Han SD (2004) Optical and electrical properties of ZnGa2O4/Mn2+ powder electroluminescent device. Mater Lett 58(7–8):1354–1357

    Article  CAS  Google Scholar 

  84. Qiao B, Tang ZL, Zhang ZT, Chen L (2007) Study on ZnGa2O4:Cr3+ a.c. powder electroluminescent device. Mater Lett 61(2):401–404

    Article  CAS  Google Scholar 

  85. Liu Z, Jing X, Wang L (2007) Luminescence of native defects in Zn2GeO4. J Electrochem Soc 154(6):H500–H506

    Article  CAS  Google Scholar 

  86. Bondar V, Popovich S, Felter T, Wager JF (2001) Low-temperature technology and physical processes in green thin-film phosphor Zn2GeO4:Mn. Mater Res Symp Proc 667:G761–G766

    Google Scholar 

  87. Lewis JS, Holloway PH (2000) Sputter deposition and electroluminescence of Zn2GeO4:Mn. J Electrochem Soc 147(8):3148–3150

    Article  CAS  Google Scholar 

  88. Miyata T, Mochizuki Y, Minami T (2005) High-luminance EL devices using Zn2Si1-XGeXO4:Mn thin films prepared by combinatorial deposition by r.f. magnetron sputtering with subdivided powder targets. IEICE Trans Electron E88-C(11):2065–2069

    Google Scholar 

  89. Williams LC, Norton DP, Budai J, Holloway PH (2004) Cathodoluminescence from thin film Zn2GeO4:Mn phosphor grown by pulsed laser deposition. J Electrochem Soc 151(8):H188–H191

    Article  CAS  Google Scholar 

  90. Baker CC, Heikenfeld J, Steckl AJ (2002) Photoluminescent and electroluminescent Zn2Si0.5Ge0.5O4:Mn thin films for integrated optic devices. IEEE J Sel Top Quantum Elec 8(6):1420–1426

    Article  CAS  Google Scholar 

  91. Ozawa L, Itoh M (2003) Cathode ray tube phosphors. Chem Rev 103(10):3835–3856

    Article  CAS  Google Scholar 

  92. Cho KG, Kumar D, Jones SL, Lee DG, Holloway PH, Singh RK (1998) Growth and characterization of Eu:Y2O3 thin-film phosphors on silicon and diamond-coated silicon substrates. J Electrochem Soc 145(10):3456–3462

    Article  CAS  Google Scholar 

  93. Konrad A, Herr U, Tidecks R, Kummer F, Samwer K (2001) Luminescence of bulk and nanocrystalline cubic yttria. J Appl Phys 90(7):3516–3523

    Article  CAS  Google Scholar 

  94. Jones SL, Kumar D, Singh RK, Holloway PH (1997) Luminescence of pulsed laser deposited Eu doped yttrium oxide films. Appl Phys Lett 71(3):404–406

    Article  CAS  Google Scholar 

  95. Parsapour F, Kelley DF, Williams RS (1998) Spectroscopy of Eu3+-doped PtS2 nanoclusters. J Phys Chem B 102(41):7971–7977

    Article  CAS  Google Scholar 

  96. Buchanan RA, Wickersheim KA, Weaver JL, Anderson EE (1968) Cathodoluminescent properties of the rare earths in yttrium oxide. J Appl Phys 39(9):4342–4347

    Article  CAS  Google Scholar 

  97. Shin SH, Kang JH, Jeon DY, Choi SH, Lee SH, You YC, Zang DS (2005) Cathodoluminescence change of Y2O3:Eu phosphors by incorporation of Zn ions. Solid State Commun 135(1–2):30–33

    Article  CAS  Google Scholar 

  98. Shin SH, Kang JH, Jeon DY, Zang DS (2005) Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions. J Lumin 114(3–4):275–280

    Article  CAS  Google Scholar 

  99. Jung MK, Park WJ, Yoon DH (2007) Photoluminescence characteristics of red phosphor Eu3+, Sm3+ Co-doped Y2O3 for white light emitting diodes. Sensor Actuat B-Chem 126(1):328–331

    Article  CAS  Google Scholar 

  100. Chang NC (1963) Fluorescence and stimulated emission from trivalent europium in yttrium oxide. J Appl Phys 34(12):3500–3504

    Article  CAS  Google Scholar 

  101. Nazarov MV, Kang JH, Jeon DY, Popovici E-J, Muresan L, Tsukerblat BS (2005) Lattice parameter and luminescence properties of europium activated yttrium oxide. Solid State Commun 133(3):183–186

    Article  CAS  Google Scholar 

  102. Sakuma S, Kominami H, Neo Y, Aoki T, Nakanishi Y, Mimura H (2005) Effect of La and Zn addition on Y2O3:Eu phosphors. Appl Surf Sci 244(1–4):458–460

    Article  CAS  Google Scholar 

  103. Popovici EJ, Muresan L, Amalia H, Indrea E, Vasilecu M (2007) Synthesis and characterisation of europium activated yttrium oxide fine powders. J Alloys Compd 434–435:809–812

    Article  CAS  Google Scholar 

  104. Rakov N, Lozano W, Maciel GS, de Araujo CB (2006) Nonlinear luminescence in Eu3+-doped Y2O3 powders pumped at 355 nm. Chem Phys Lett 428(1–3):134–137

    Google Scholar 

  105. Kottaisamy M, Jeyakumar D, Jagannathan R, Mohan Rao M (1996) Yttrium oxide: Eu3+ red phosphor by self-propagating high temperature synthesis. Mat Res Bull 31(8):1013–1020

    Google Scholar 

  106. Kang YC, Roh HS, Park SB (2000) Preparation of Y2O3:Eu phosphor particles of filled morphology at high precursor concentrations by spray pyrolysis. Adv Mater 12(6):451–453

    Article  CAS  Google Scholar 

  107. Hao J, Studenikin SA, Cocivera M (2001) Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis. J Lumin 93(4):313–319

    Article  CAS  Google Scholar 

  108. Lee YK, Oh JR, Do YR (2007) Enhanced extraction efficiency of Y2O3:Eu3+ thin-film phosphors coated with hexagonally close-packed polystyrene nanosphere monolayers. Appl Phys Lett 91(4):041907

    Google Scholar 

  109. Cho JY, Huh YD, Park CR, Do YR (2007) The effect of annealing temperature on the CL properties of sol-gel derived Y2O3:Re (Re = Eu3+, Tb3+, Tm3+) phosphors. J Electrochem Soc 154(9):J272–J277

    Article  CAS  Google Scholar 

  110. Cho JY, Ko KY, Do YR (2007) Optical properties of sol-gel derived Y2O3:Eu3+ thin-film phosphors for display applications. Thin Solid Films 515(7–8):3373–3379

    Article  CAS  Google Scholar 

  111. McKittric J, Bacalski CF, Hirata GA, Hubbard KM, Pattillo SG, Salazar KV, Trkula M (2000) Characterization of photoluminescent (Y1–xEux)2O3 thin films prepared by metallorganic chemical vapor deposition. J Am Ceram Soc 83(5):1241–1246

    Article  Google Scholar 

  112. Jankowski AF, Schrawyer LR, Hayes JP (1993) Sputter deposition of yttrium-oxides. J Vac Sci Technol A 11(4):1548–1552

    Article  CAS  Google Scholar 

  113. Evangelou EK, Wiemer C, Faniculli M, Sethu M, Cranton W (2003) Electrical and structural characteristics of yttrium oxide films deposited by rf-magnetron sputtering on n-Si. J Appl Phys 94(1):318–325

    Article  CAS  Google Scholar 

  114. Ko KY, Lee YK, Do YR, Huh YD (2007) Structural effect of a two-dimensional SiO2 photonic crystal layer on extraction efficiency in sputter-deposited Y2O3:Eu3+ thin-phosphors. J Appl Phys 102(1):013509

    Article  CAS  Google Scholar 

  115. Zang DS, Ko KY, Park HK, Yoon DH, Do YR (2008) A study of the factors influencing the brightness of the photoluminescence of sputter-deposited Y2O3:Eu3+ film phosphors. J Electrochem Soc 155(5):J111–J116

    Article  CAS  Google Scholar 

  116. Travlos A, Boukos N, Apostolopoulos G, Dimoulas A (2003) Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001). Appl Phys Lett 82(23):4053–4055

    Google Scholar 

  117. Korzenski MB, Lecoeur P, Mercey B, Chippaux D, Raveau B, Desfeux R (2000) PLD-grown Y2O3 thin films from Y metal: an advantageous alternative to films deposited from yttria. Chem Mater 12(10):3139–3150

    Article  CAS  Google Scholar 

  118. Cho KG, Kumar D, Holloway PH, Singh RK (1998) Luminescence behavior of pulsed laser deposited Eu:Y2O3 thin films phosphors on sapphire substrates. Appl Phys Lett 73(21):3058–3060

    Article  CAS  Google Scholar 

  119. Zhang S, Xiao R (1998) Yttrium oxide films prepared by pulsed laser deposition. J Appl Phys 83(7):3842–3848

    Article  CAS  Google Scholar 

  120. Kumar D, Cho KG, Chen Z, Craciun V, Holloway PH, Singh RK (1999) Cathodoluminescent properties of pulsed-laser-deposited Eu-activated Y2O3 epitaxial films. Phys Rev B 60(19):13331–13334

    Google Scholar 

  121. Gao HJ, Kumar D, Cho KG, Holloway PH, Singh RK, Fan XD, Yan Y, Pennycook SJ (1999) Epitaxial growth of Y2O3:Eu thin films on LaAlO3. Appl Phys Lett 75(15):2223–2225

    Article  CAS  Google Scholar 

  122. Hones SL, Kumar D, Cho KG, Singh R, Holloway PH (1999) Pulsed laser deposition of Y2O3:Eu thin film phosphors. Displays 19(4):151–167

    Article  Google Scholar 

  123. Craciun V, Howard J, Lambers ES, Singh RK, Craciun D, Perriere J (1999) Low-temperature growth of Y2O3 thin films by ultraviolet-assisted pulsed laser deposition. Appl Phys A 69(1):S535–S538

    Article  CAS  Google Scholar 

  124. Kumar D, Sankar J, Cho KG, Craciun V, Singh RK (2000) Enhancement of cathodoluminescent and properties of Eu:Y2O3 luminescent films by vacuum cooling. Appl Phys Lett 77(16):2518–2520

    Article  CAS  Google Scholar 

  125. Moll OPY, Perriere J, Millon E, Defourneau RM, Fourneau D, Vincent B, Essahloui A, Boudrioua A, Seiler W (2002) Structural and optical properties of rare-earth-doped Y2O3 waveguides grown by pulsed laser deposition. J Appl Phys 92(9):4885–4890

    Article  CAS  Google Scholar 

  126. Bae JS, Jeong JH, Yi SS, Park JC (2003) Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution. Appl Phys Lett 82(21):3629–3631

    Article  CAS  Google Scholar 

  127. Bar S, Huber G, Gonzalo J, Perea A, Munz M (2005) Pulsed laser deposition of Eu:Y2O3 thin films on (0001) α-Al2O3. Appl Phys A 80(2):209–216

    Article  CAS  Google Scholar 

  128. Yang SH, Hsueh TJ, Chang SJ (2006) Effect of ZnO buffer layer on the cathodoluminescence of ZnGa2O4:Mn/ZnO phosphor screen for FED. J. Crys. Growth 287(1):194–198

    Article  CAS  Google Scholar 

  129. Yi SS, Shim KS, Yang HK, Moon BK, Choi BC, Jeong JH, Kim JH, Bae JS (2007) Improved cathodoluminescent characteristics of Y2O3:Eu3+ thin films by Li-doping. Appl Phys A 87(4):667–671

    Article  CAS  Google Scholar 

  130. Suyama T, Okamoto K, Hamakawa Y (1982) New type of thin-film electroluminescent device having a multilayer structure. Appl Phys Lett 41(5):462–463

    Article  CAS  Google Scholar 

  131. Minami T, Yamazaki M, Miyata T, Shirai T (2001) Mn activated Y2O3–GeO2 phosphors for thin film electroluminescent devices. Jpn J Appl Phys 40(8B):L864–L866

    Article  CAS  Google Scholar 

  132. Minami T, Kobayashi Y, Miyata T, Yamazaki M (2003) High-luminance thin-film electroluminescent devices using Y2O3:Mn phosphor. Thin Solid Films 443(1–2):91–96

    Article  CAS  Google Scholar 

  133. Ono YA, Fuyama M, Onisawa K, Tamura K, Ando M (1989) White light emitting thin-film electroluminescent devices with stacked SrS:Ce/CaS: Eu active layers. J Appl Phys 66(11):5564–5571

    Article  CAS  Google Scholar 

  134. Tanaka S, Yoshiyama H, Nishiura J, Ohshio S, Kawakami H, Kobayashi H (1987) Bright white-light electroluminescence based on nonradiative energy transfer in Ce- and Eu-doped SrS thin films. Appl Phys Lett 51(21):1661–1663

    Article  CAS  Google Scholar 

  135. Okamoto S, Nakazawa E, Tsuchiya Y (1990) White emitting thin-film electroluminescence devices with SrS phosphor doubly activated with rare-earth ions. Jpn J Appl Phys 29(10):1987–1990

    Article  CAS  Google Scholar 

  136. Tanaka S, Ohshio S, Nishiura J, Kawakami H, Yoshiyama H, Kobayashi H (1988) Bright white-light electroluminescence in SrS:Pr, K thin films. Appl Phys Lett 52(25):2102–2104

    Article  CAS  Google Scholar 

  137. Kong W, Fogarty J, Solanki R, Tuenge RT (1995) White light emitting SrS: Pr electroluminescent devices fabricated via atomic layer epitaxy. Appl Phys Lett 66(4):419–421

    Article  CAS  Google Scholar 

  138. Ruffner JA, Tuenge RT, Sun SS, Grandon PD, Hlava PF (1997) Sputter deposition of ZnS:Mn/SrS: Ce multilayered thin film white phosphor. Thin Solid Films 310(1–2):123–131

    Article  CAS  Google Scholar 

  139. Lakshmananarasimhan N, Varadaraju UV (2005) White-light generation in Sr2SiO4:Eu2+, Ce3+ under near-UV excitation. J Electrochem Soc 152(9):H152–H156

    Article  CAS  Google Scholar 

  140. Lee SH, Park JH, Son SM, Kim JS, Park HL (2006) White-light emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending. Appl Phys Lett 89(22):221916

    Article  CAS  Google Scholar 

  141. Yang WJ, Luo L, Chen TM, Wang NS (2005) Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED. Chem Mater 72(15):3883–3888

    Article  CAS  Google Scholar 

  142. Yang WJ, Chen TM (2006) White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light emitting diodes. Appl Phys Lett 88(10):101903

    Article  CAS  Google Scholar 

  143. Liu X, Lin C, Lin J (2007) White-light emission from Eu3+ in CaIn2O4 host lattices. Appl Phys Lett 90(8):081904–081906

    Article  CAS  Google Scholar 

  144. Liu X, Lin C, Luo Y, Lin J (2007) Host-sensitized luminescence of Dy3+, Pr3+, Tb3+ in polycrystalline SrIn2O4 for field emission displays. J Electrochem Soc 154(1):J21–J27

    Article  CAS  Google Scholar 

  145. Mini Krishna K, Anoop G, Jayaraj MK (2007) Host-sensitized white luminescence in ZnGa2O4:Dy3+ phosphor. J Electrochem Soc 154(10):J310–J313

    Google Scholar 

  146. Mini Krishna K, Anoop G, Jayaraj MK (2007) The effect of substrate temperature on structural and luminescent characteristics of RF magnetron sputtered ZnGa2O4:Dy3+ thin films. J Electrochem Soc 154(11):J379–J382

    Google Scholar 

  147. Mini Krishna K, Anoop G, Jayaraj MK (2012) Electroluminescent characteristics of ZnGa2O4:Dy3+ thin film devices fabricated on glass substrates. Phys Status Solidi A 209(12):2641–2645

    Google Scholar 

  148. Anoop G, Mini Krishna K, Jayaraj MK (2008) Influence of dopant source on structural and optical properties of Mn doped ZnGa2O4 thin films. Appl Phys A 90(4):711–715

    Google Scholar 

  149. Anoop G, Mini Krishna K, Jayaraj MK (2011) Characteristics of A.C. electroluminescence in ZnGa2O4:Mn2+ thin film devices. J Electrochem Soc 158(8):J269–J272

    Google Scholar 

  150. Anoop G, Mini Krishna K, Rajeev Kumar K, Jayaraj MK (2008) Effect of ZnO buffer layer on the structural and optical properties of Zn2GeO4:Mn2+ thin films. J Electrochem Soc 155(10):J270–J273

    Google Scholar 

  151. Aneesh PM, Mini Krishna K, Jayaraj MK (2009) Hydrothermal synthesis and characterization of undoped and Eu doped ZnGa2O4 nanoparticles. J Electrochem Soc 156(3):K33–K36

    Google Scholar 

  152. Anoop G, Mini Krishna K, Jayaraj MK (2012) Structural and luminescent characteristics of pulsed laser deposited Eu3+ doped Y2O3 thin films. Philos Mag 92(14):1777–1787

    Google Scholar 

  153. McKittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays 19(4):169–172

    Article  CAS  Google Scholar 

  154. Rack PD, Potter MD, Kurinec S, Park W, Penczek J, Wagner BK, Summers CJ (1998) Luminescence properties of thin film Ta2Zn3O8 and Mn doped Ta2Zn3O8. J Appl Phys 84(8):4466–4470

    Article  CAS  Google Scholar 

  155. Minami T, Shirai T, Nakatani T, Miyata T (2000) Electroluminescent devices with Ga2O3:Mn thin-film emitting layer prepared by sol-gel process. Jpn J Appl Phys 39(6A):L524–L526

    Article  CAS  Google Scholar 

  156. Xu Z, Li Y, Liu Z, Wang D (2005) UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors. J Alloys Compd 391(1–2):202–205

    Article  CAS  Google Scholar 

  157. Partlow WD, Feldman DW (1973) Trapping effects in the luminescence of Zn2GeO4:Mn2+. J Lumin 6(1):11–20

    Article  CAS  Google Scholar 

  158. Barthou C, Benoit J, Benalloul P, Morell A (1994) Mn2+ concentration effect on the optical properties of Zn2SiO4:Mn phosphors. J Electrochem Soc 141(2):524–528

    Article  CAS  Google Scholar 

  159. Jiao H, Liao F, Tian S, Jing X (2003) Luminescent properties of Eu3+ and Tb3+ activated Zn3Ta2O8. J Electrochem Soc 150(9):H220–H224

    Article  CAS  Google Scholar 

  160. Shimomura Y, Kurushima T, Shigeiwa M, Kijima N (2008) Redshift of green photoluminescence of Ca3Sc2Si3O12:Ce3+ phosphor by charge compensatory additives. J Electrochem Soc 155(2):J45–J49

    Article  CAS  Google Scholar 

  161. Shimomura Y, Kurushima T, Kijima N (2007) Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+. J Electrochem Soc 154:J234–J238

    Google Scholar 

  162. Kim JS, Kim JS, Kim TW, Park HL, Kim YG, Chang SK, Han SD (2004) Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors. Solid State Commun 131(8):493–497

    Article  CAS  Google Scholar 

  163. Minami T, Miyata T, Shirai T, Nakatani T (2000) Electroluminescent oxide phosphor thin films prepared by a sol-gel process. Mater Res Symp Proc 621:Q431–Q436

    Article  Google Scholar 

  164. Naidu SA, Varadaraju UV (2008) Electric dipole red emission in Eu3+-doped low bandgap oxide LiInO2. Electrochem Solid-State Lett 11(5):J40–J42

    Article  CAS  Google Scholar 

  165. Tang YS, Hu SF, Lin CC, Bagkar NC, Liu RS (2007) Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light uv light-emitting diodes. Appl Phys Lett 90(15):151108

    Article  CAS  Google Scholar 

  166. Chang CK, Chen TM (2007) White-light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu, Mn through energy transfer. Appl Phys Lett 90(16):161901

    Article  CAS  Google Scholar 

  167. Won YH, Jang HS, Im WB, Jeon DY, Lee JS (2006) Tunable full-color emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light emitting diodes. Appl Phys Lett 89(23):231909

    Google Scholar 

  168. Hao Z, Zhang J, Zhang X, Sun X, Luo Y, Lu S, Wang XJ (2007) White light emitting diode by using α-Ca2P2O7:Eu2+, Mn2+ phosphor. Appl Phys Lett 90(26):261113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mini Krishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mini Krishna, K., Jayaraj, M.K. (2020). Oxide Luminescent Materials. In: Jayaraj, M. (eds) Nanostructured Metal Oxides and Devices. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-3314-3_1

Download citation

Publish with us

Policies and ethics