Skip to main content

Linkages of Microbial Plant Growth Promoters Toward Profitable Farming

  • Chapter
  • First Online:
Phytobiomes: Current Insights and Future Vistas

Abstract

Soil and plant health are linked with each other, and both are badly affected by the excess application of inorganic fertilizers and pesticides. The negative impact of chemical fertilizers toward the environment forced the scientific community to find out an alternative strategy that can improve crop yield and quality in an eco-friendly manner. The modern agriculture system is well furnished with microbial inoculants and plant defense elicitors. However, the application of microbes to manage plant growth and fitness needs to improve. Microbial inoculants play an important role in soil mineralization, energy mobilization and channelization, and also nitrogen fixation. This chapter aims to review the microbial plant helpers and their interlinks toward plant and human health. Microbial inoculums improve crop quality and yield, plant and soil health, and profit to farmers and reduce pollution. Proper utilization of microbial inoculants could help to improve the economic condition of the farmers and the country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Omar SA, Omar S (2001) Survival of rhizobia/bradyrhizobia and a rock-phosphate-solubilizing fungus Aspergillus niger on various carriers from some agro-industrial wastes and their effects on nodulation and growth of faba bean and soybean. J Plant Nutr 24:261–272

    CAS  Google Scholar 

  • Abebe Z, Deressa H (2017) The effect of organic and inorganic fertilizers on the yield of two contrasting soybean varieties and residual nutrient effects on a subsequent finger millet crop. Agronomy 7:42. https://doi.org/10.3390/agronomy7020042

    Article  CAS  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M et al (2018) Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ 6:e5122. https://doi.org/10.7717/peerj.5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alagawadi AR, Gaur A (1992) Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land tropical agriculture (Trinidad and Tobago). Trop Agric 69:347–350

    Google Scholar 

  • Alloway B (2008) Zinc in soils and crop nutrition. International Zinc Association, Brussels

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambros S, Martinez F, Ivars P, Hernandez C, de la Iglesia F, Elena SF (2017) Molecular and biological characterization of an isolate of tomato mottle mosaic virus (ToMMV) infecting tomato and other experimental hosts in eastern Spain. Eur J Plant Pathol 149:261–268

    CAS  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science (80- ) 348:1261071. https://doi.org/10.1126/science.1261071

    Article  CAS  Google Scholar 

  • Archna S, Priyank V, Nath YA, Kumar SA (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    CAS  Google Scholar 

  • Arun K (2007) Bio-fertilizers for sustainable agriculture. Mechanism of P solubilization. Agribios publishers, Jodhpur, pp 196–197

    Google Scholar 

  • Asif MA et al (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49:250–256

    CAS  PubMed  Google Scholar 

  • Azooz MM, Ahmad P (2013) Role of bio-fertilizers in crop improvement. In: Crop improvement: new approaches and modern techniques. Springer, New York, p 189

    Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E et al (2018) Plant growth-promoting Rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606. https://doi.org/10.3389/fmicb.2018.01606

    Article  PubMed  PubMed Central  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648. https://doi.org/10.1007/s00374-010-0456-x

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE. (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth–a critical assessment. In: Advances in agronomy. Elsevier, San Diego, pp 77–136

    Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    CAS  Google Scholar 

  • Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 41–76

    Google Scholar 

  • Cakmakçi R, Dönmez F, Aydın A, Åžahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Google Scholar 

  • Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A (2017) Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front Microbiol 8:2207. https://doi.org/10.3389/fmicb.2017.02207

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yang F, Zhang L, Wang J (2016) Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp . PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J 33:870–877. https://doi.org/10.1080/01490451.2015.1123329

    Article  CAS  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim S-D, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80:115–123

    CAS  PubMed  Google Scholar 

  • Clúa J, Roda C, Zanetti ME, Blanco FA (2018) Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes (Basel) 9. https://doi.org/10.3390/genes9030125

  • Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. npj Sci Food 2:14. https://doi.org/10.1038/s41538-018-0021-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. Crop Prot 21:671–677

    Google Scholar 

  • Costa ML, Santos MCR, Carrapico F, Pereirac AL (2009) Azolla-Anabaena’s behavior in urban wastewater and artificial media-influence of combined nitrogen. Water Res 43:3743–3750

    CAS  PubMed  Google Scholar 

  • Couillerot O et al (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649

    CAS  PubMed  Google Scholar 

  • Dash D, Gupta S, Deole S (2018) Study of characterization of tamarind associated rhizobium spp. and phosphate solubilizing bacteria and their potency for germination of tamarind seeds. Pharm Innov J 7:282–286. Available at: www.thepharmajournal.com. Accessed May 21, 2019

    Google Scholar 

  • de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Pérez JC (2014) Bell pepper (Capsicum annum L.) crop as affected by shade level: fruit yield, quality, and postharvest attributes, and incidence of phytophthora blight (caused by Phytophthora capsici Leon.). HortScience 49:891–900

    Google Scholar 

  • Dinesh R, Srinivasan V, Hamza S, Sarathambal C, Anke Gowda SJ, Ganeshamurthy AN et al (2018) Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma 321:173–186. https://doi.org/10.1016/J.GEODERMA.2018.02.013

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Okon Y, Vanderleyden J (2002) Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol Fertil Soils 36:284–297

    CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Google Scholar 

  • Fageria NK (2012) Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43:2063–2113. https://doi.org/10.1080/00103624.2012.697234

    Article  CAS  Google Scholar 

  • Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12:1600099

    Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:3

    PubMed  PubMed Central  Google Scholar 

  • Galal Y (2003) Assessment of nitrogen availability to wheat (Triticum aestivum L.) from inorganic and organic N sources as affected by Azospirillum brasilense and Rhizobium leguminosarum inoculation. Egypt J Microbiol 38:57–73

    Google Scholar 

  • García-Fraile P et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122

    PubMed  PubMed Central  Google Scholar 

  • Geetha SJ, Joshi SJ (2013) Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. Sci World J 2013:315890. https://doi.org/10.1155/2013/315890

    Article  CAS  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 5:35–40

    Google Scholar 

  • Gill U et al (2019) Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against tomato yellow leaf curl virus and tomato mottle virus. Theor Appl Genet 132:1–12

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    PubMed  PubMed Central  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239

    CAS  Google Scholar 

  • Gong S (2018) Investigating Vector-Virus-Plant interactions influencing transmission efficiency of Tomato yellow leaf curl virus and Tomato mottle virus by Bemisia tabaci. Auburn Univ In Press

    Google Scholar 

  • Gong P, Liang L, Zhang Q (2011) China must reduce fertilizer use too. Nature 473:284–285. https://doi.org/10.1038/473284e

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Tiwari S (2017) Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190. https://doi.org/10.1016/J.RHISPH.2017.04.013

    Article  Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013:869697. https://doi.org/10.1155/2013/869697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    CAS  Google Scholar 

  • Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Jia Y, Chen H, Zhang L, Yang J, Zhang J et al (2019) Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep 9:1248. https://doi.org/10.1038/s41598-018-37838-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    CAS  PubMed  Google Scholar 

  • Han H-S, Lee K (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130

    CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009a) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25

    CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Samiyappan R (2009b) Differential expression of pathogenesis-related proteins and defense enzymes in banana: interaction between endophytic bacteria, banana bunchy top virus and Pentalonia nigronervosa. Biocon Sci Technol 19:843–857

    Google Scholar 

  • He Y, Pantigoso HA, Wu Z, Vivanco JM (2019) Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J Appl Microbiol. https://doi.org/10.1111/jam.14273. jam.14273

  • Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velazquez-Del Valle MG, Hernandez-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl Soil Ecol 39:180–186

    Google Scholar 

  • Hittalmani S, Mahesh H, Mahadevaiah C, Prasannakumar MK (2016) De novo genome assembly and annotation of rice sheath rot fungus Sarocladium oryzae reveals genes involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics 17:271

    PubMed  PubMed Central  Google Scholar 

  • Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67:386–391. https://doi.org/10.1093/biosci/bix010

    Article  Google Scholar 

  • Hwang S, Ahmed H, Strelkov S, Gossen B, Turnbull G, Peng G, Howard R (2011) Seedling age and inoculum density affect clubroot severity and seed yield in canola. Can J Plant Sci 91:183–190

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansa J, Gryndler M (2010) Biotic environment of the arbuscular mycorrhizal fungi in soil. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Heidelberg, pp 209–236

    Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Front Plant Sci 4:134. https://doi.org/10.3389/fpls.2013.00134

    Article  PubMed  PubMed Central  Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394

    PubMed  Google Scholar 

  • Ji P, Koné D, Yin J, Jackson KL, Csinos AS (2012) Soil amendments with Brassica cover crops for management of Phytophthora blight on squash. Pest Manag Sci 68:639–644

    CAS  PubMed  Google Scholar 

  • Jiang Z-Q, Guo Y-H, Li S-M, Qi H-Y, Guo J-H (2006) Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol Control 36:216–223

    Google Scholar 

  • Jogaiah S, Sharathchandra R, Raj N, Vedamurthy A, Shetty HS (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41:7815–7824

    CAS  PubMed  Google Scholar 

  • Joseph B, Ranjan Patra R, Lawrence R (2012) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 1:141–152

    Google Scholar 

  • Kafle A, Cope K, Raths R, Krishna Yakha J, Subramanian S, Bücking H et al (2019) Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy 9:127. https://doi.org/10.3390/agronomy9030127

    Article  CAS  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing Bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593. https://doi.org/10.3389/fmicb.2017.02593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannaiyan S, Kumar K (2006) Biodiversity of Azolla and its algal symbiont, Anabaena azollae. NBA Scientific Bulletin Number-2, National Biodiversity Authority, Chennai, Tamil Nadu, India, pp 1–31

    Google Scholar 

  • Kant S, Kumar A, Kumar S, Kumar V, Pal Y, Shukla AK (2016) Effect of rhizobium, PSB and p-levels on growth, yield attributes and yield of Urdbean (Vigna Mungo L.). J Pure Appl Microbiol 10:3093–3099

    CAS  Google Scholar 

  • Karnwal A (2012) Screening of plant growth-promoting rhizobacteria from maize (Zea mays) and wheat (Triticum aestivum). Afr. J. Food Agric. Nutr. Dev. 12:6170–6185

    CAS  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7:70–77

    CAS  PubMed  Google Scholar 

  • Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Plant health under biotic stress. Springer Singapore, Singapore, pp 219–236. https://doi.org/10.1007/978-981-13-6040-4_11

    Chapter  Google Scholar 

  • Kasiamdari R, Smith S, Smith F, Scott E (2002) Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil 238:235–244

    CAS  Google Scholar 

  • Katyal J, Venkateswarlu B, Das S (1994) Biofertilisers for nutrient supplementation in Dryland agriculture potentials and problems. Fertil News 39:27–27

    Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2008) Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol 120:353–362

    CAS  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45:71–77

    Google Scholar 

  • Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainability in developing Asian countries. Philos Trans R Soc Lond Ser B Biol Sci 363:877–891. https://doi.org/10.1098/rstb.2007.2189

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98. https://doi.org/10.1080/03650340902806469

    Article  CAS  Google Scholar 

  • Kiarie E, Romero LF, Nyachoti CM (2013) The role of added feed enzymes in promoting gut health in swine and poultry. Nutr Res Rev 26:71–88

    PubMed  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldán A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Google Scholar 

  • Koné SB, Dionne A, Tweddell RJ, Antoun H, Avis TJ (2010) Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biol Control 52:167–173

    Google Scholar 

  • Kukreja K, Suneja S, Goyal S, Narula N (2004) Phytohormone production by Azotobacter-a review. Agric Rev Agric Res Commun Cent India 25(1):70–75

    Google Scholar 

  • Kumar KVK, Reddy M, Kloepper J, Lawrence K, Groth D, Miller M (2016) Sheath blight disease of rice (Oryza sativa L.)–an overview. Biosci Biotechnol Res Asia 6:465–480

    Google Scholar 

  • Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W (2019) Plant growth-promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer Netherlands, Dordrecht. doi.org/10.1007/978-981-13-6040-4_6

    Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    CAS  PubMed  Google Scholar 

  • Löffler M, Kessel B, Ouzunova M, Miedaner T (2010) Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines. Theor Appl Genet 120:1053–1062

    PubMed  Google Scholar 

  • Lotze-Campen H (2011) Climate change, population growth, and crop production: an overview. In: Crop adaptation to climate change. Wiley-Blackwell, Oxford, pp 1–11. https://doi.org/10.1002/9780470960929.ch1

    Chapter  Google Scholar 

  • Machado CS, Fregonesi BM, Alves RIS, Tonani KAA, Sierra J, Martinis BS et al (2017) Health risks of environmental exposure to metals and herbicides in the Pardo River. Brazil Environ Sci Pollut Res 24:20160–20172. https://doi.org/10.1007/s11356-017-9461-z

    Article  CAS  Google Scholar 

  • Mahatma M, Bhatnagar R, Solanki R, Mittal G, Shah R (2011) Characterisation of downy mildew resistant and susceptible pearl millet (Pennisetum glaucum (L.) R. Br.) genotypes using isozyme, protein, randomly amplified polymorphic DNA and inter-simple sequence repeat markers. Arch Phytopathol Plant Protect 44:1985–1998

    CAS  Google Scholar 

  • Mahdi S, Dar S, Ahmad S, Hassan G (2010) Zinc availability–a major issue in agriculture. Res J Agric Sci 3:78–79

    Google Scholar 

  • Maia LC, Kimbrough JW, Benny GL (1994) Ultrastructure of spore germination in Gigaspora albida (Glomales). Mycologia 86:343. https://doi.org/10.2307/3760564

    Article  Google Scholar 

  • Malakouti MJ (2008) The effect of micronutrients in ensuring efficient use of macronutrients. Turk J Agric For 32:215–220

    CAS  Google Scholar 

  • Manzoor M, Abbasi MK, Sultan T (2017) Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiol J 34:81–95. https://doi.org/10.1080/01490451.2016.1146373

    Article  CAS  Google Scholar 

  • Mariutto M et al (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA, Ashraf M (2012) Potential of rhizobia for sustainable production of non-legumes. In: Crop production for agricultural improvement. Springer, Dordrecht, pp 659–704

    Google Scholar 

  • Mehnaz S (2015) Azospirillum: a biofertilizer for every crop. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer India, New Delhi, pp 297–314

    Google Scholar 

  • Morawicki RO, Díaz González DJ (2018) Food sustainability in the context of human behavior. Yale J Biol Med 91:191–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosha SS (2018) A review on significance of Azolla meal as a protein plant source in finfish culture. J Aquacult Res Dev 09:1–7. https://doi.org/10.4172/2155-9546.1000544

    Article  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D et al (2010) High levels of Miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754. https://doi.org/10.1371/journal.pone.0009754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraleedharan H, Seshadri S, Perumal K (2010) Biofertilizer (Phosphobacteria) Shri AMM Murugappa Chettiar Research Centre, Taramani, Chennai 600113, pp 1–16

    Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    PubMed  Google Scholar 

  • Naderifar M, Daneshian J (2012) Effect of seed inoculation with Azotobacter and Azospirillum and different nitrogen levels on yield and yield components of canola (Brassica napus L.). Iran J Plant Physiol 3(1):619–626

    Google Scholar 

  • Naseri R, Moghadam A, Darabi F, Hatami A, Tahmasebei GR (2013) The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (SC 704) as a second cropping in western Iran. Bull Environ Pharmacol Life Sci 2:104–112

    Google Scholar 

  • Niyongere C et al (2013) Understanding banana bunchy top disease epidemiology in Burundi for an enhanced and integrated management approach. Plant Pathol 62:562–570

    Google Scholar 

  • Noel TC, Sheng C, Yost C, Pharis R, Hynes M (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    CAS  PubMed  Google Scholar 

  • Noumavo PA et al (2013) Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. Am J Plant Sci 4:1013

    Google Scholar 

  • Oh B-T et al (2011) Suppression of Phytophthora blight on pepper (Capsicum annuum L.) by bacilli isolated from brackish environment. Biocontrol Sci Tech 21:1297–1311

    Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oosterhuis DM, Loka DA, Raper TB (2013) Potassium and stress alleviation: physiological functions and management of cotton. J Plant Nutr Soil Sci 176:331–343. https://doi.org/10.1002/jpln.201200414

    Article  CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. https://doi.org/10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • Panhwar QA, Radziah O, Zaharah AR, Sariah M, Razi IM (2011) Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. J Environ Biol 32:607–612

    CAS  PubMed  Google Scholar 

  • Pankievicz VCS, do Amaral FP, KFDN S, Agtuca B, Xu Y, Schueller MJ et al (2015) Robust biological nitrogen fixation in a model grass-bacterial association. Plant J 81:907–919. pmid:25645593

    CAS  PubMed  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena V, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2:101–116

    Google Scholar 

  • Parikh S, James B (2012) Soil: the foundation of agriculture. Nat Educ Knowledge 3:2

    Google Scholar 

  • Park K, Park J-W, Lee S-W, Balaraju K (2013) Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor. ASM Crop Prot 54:199–205

    CAS  Google Scholar 

  • Pastor N, Rosas S, Luna V, Rovera M (2014) Inoculation with Pseudomonas putida PCI2, a phosphate solubilizing rhizobacterium, stimulates the growth of tomato plants. Symbiosis 62:157–167

    CAS  Google Scholar 

  • Patil VK (2013) Studies on integrated nutrient management in banana Cv. Ardhapuri (Musa AAA). Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani

    Google Scholar 

  • Patil HJ, Solanki MK (2016) Microbial inoculant: modern era of fertilizers and pesticides. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi, pp 319–343. https://doi.org/10.1007/978-81-322-2647-5_19

    Chapter  Google Scholar 

  • Pavithra D, Yapa N (2018) Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundw Sustain Dev 7:490–494. https://doi.org/10.1016/J.GSD.2018.03.005

    Article  Google Scholar 

  • Pereg L, de Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414

    CAS  Google Scholar 

  • Pliego C, Ramos C, de Vicente A, Cazorla FM (2011) Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340:505–520

    CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Rabie M, Ratti C, Calassanzio M, Aleem EA, Fattouh FA (2017) Phylogeny of Egyptian isolates of cucumber mosaic virus (CMV) and tomato mosaic virus (ToMV) infecting Solanum lycopersicu. Eur J Plant Pathol 149:219–225

    CAS  Google Scholar 

  • Raghuwanshi R (2012) Opportunities and challenges to sustainable agriculture in India. NeBIO 3:78–86

    Google Scholar 

  • Raj KS (2014) Paripex – invitro screening of trichoderma in rockphosphate solubilization and mycoremediation of heavy metal contaminated water. Indian J Res III:1–4

    Google Scholar 

  • Raj SN, Deepak S, Basavaraju P, Shetty HS, Reddy M, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588

    Google Scholar 

  • Rask KA, Johansen JL, Kjøller R, Ekelund F (2019) Differences in arbuscular mycorrhizal colonisation influence cadmium uptake in plants. Environ Exp Bot 162:223–229. https://doi.org/10.1016/J.ENVEXPBOT.2019.02.022

    Article  CAS  Google Scholar 

  • Rendina N, Nuzzaci M, Scopa A, Cuypers A, Sofo A (2019) Chitosan-elicited defense responses in cucumber mosaic virus (CMV)-infected tomato plants. J Plant Physiol 234:9–17

    PubMed  Google Scholar 

  • Ribeiro VP, Marriel IE, de Sousa SM, de Paul Lana UG, Mattos BB, de Oliveira CA et al (2018) Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz J Microbiol 49:40–46. https://doi.org/10.1016/j.bjm.2018.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Rojas ES, Gleason M, Batzer J, Duffy M (2011) Feasibility of delaying removal of row covers to suppress bacterial wilt of muskmelon (Cucumis melo). Plant Dis 95:729–734

    PubMed  Google Scholar 

  • Rokhzadi A, Toashih V (2011) Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth-promoting rhizobacteria. Aust J Crop Sci 5:44

    Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi G, Majidi E (2008) Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions American-Eurasian. J Agric Environ Sci 3:253–257

    Google Scholar 

  • Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:192. https://doi.org/10.3390/agronomy9040192

    Article  CAS  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:30

    Google Scholar 

  • Sahoo DK, Raha S, Hall JT, Maiti IB (2014) Overexpression of the synthetic chimeric native-T-phylloplanin-GFP genes optimized for monocot and dicot plants renders enhanced resistance to blue mold disease in tobacco (N. tabacum L.). Sci World J 2014:601314

    Google Scholar 

  • Santhanam R, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci 112:E5013–E5020

    CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767. https://doi.org/10.1093/aob/mct048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    CAS  PubMed  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl 54:273

    Google Scholar 

  • Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P et al (2018) Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front Plant Sci 8:2204. https://doi.org/10.3389/fpls.2017.02204

    Article  PubMed  PubMed Central  Google Scholar 

  • Seenivasan N, David P, Vivekanandan P, Samiyappan R (2012) Biological control of rice root-knot nematode, Meloidogyne graminicola through mixture of Pseudomonas fluorescens strains. Biocontrol Sci Technol 22:611–632

    Google Scholar 

  • Selvarajan R, Balasubramanian V (2014) Host–virus interactions in banana-infecting viruses. In: Plant virus–host interaction. Elsevier, Amsterdam, pp 57–78

    Google Scholar 

  • Shaaban MM (2001a) Nutritional status and growth of maize plants as affected by green microalgae as soil additives. J Biol Sci 6:475–479

    Google Scholar 

  • Shaaban MM (2001b) Green microalgae water extract as foliar feeding to wheat plants. Pak J Biol Sci 4:628–632

    Google Scholar 

  • Shahzad AN, Rizwan M, Asghar MG, Qureshi MK, Bukhari SAH, Kiran A et al (2019) Early maturing Bt cotton requires more potassium fertilizer under water deficiency to augment seed-cotton yield but not lint quality. Sci Rep 9:7378. https://doi.org/10.1038/s41598-019-43563-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaikh S, Gang S, Saraf M (2016) Rhizosphere microbial community structure: a review. J Gujarat Univ 1–2:14

    Google Scholar 

  • Shan H et al (2013) Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot 44:29–37

    CAS  Google Scholar 

  • Sharma V, Sharma S, Sharma S, Kumar V (2019) Synergistic effect of bio-inoculants on yield, nodulation and nutrient uptake of chickpea ( Cicer arietinum L) under rainfed conditions. J Plant Nutr 42:374–383. https://doi.org/10.1080/01904167.2018.1555850

    Article  CAS  Google Scholar 

  • Shen B et al (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Shukla L, Suman A, Yadav A, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J App Biol Biotech 4:30–37

    CAS  Google Scholar 

  • Silva HSA, da Silva RR, Macagnan D, de Almeida H-VB, Pereira MCB, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29:288–295

    CAS  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria. Resonance 18:275–281

    Google Scholar 

  • Singh JS, Pandey VC, Singh D (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Google Scholar 

  • Singh S, Gupta G, Khare E, Behal KK, Arora NK (2014) Effect of enrichment material on the shelf life and field efficiency of bioformulation of rhizobium sp. and P-solubilizing Pseudomonas fluorescens. Sci Res Rep 4:44–50

    Google Scholar 

  • Solanki MK, Wang Z, Wang FY, Li CN, Lan TJ, Singh RK et al (2017) Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital Diazotrophic Bacteria. Sugar Tech 19:136–147. https://doi.org/10.1007/s12355-016-0445-y

    Article  CAS  Google Scholar 

  • Solanki MK, Wang F-Y, Wang Z, Li C-N, Lan T-J, Singh RK et al (2019) Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J Soil Sediment 19:1911–1927. https://doi.org/10.1007/s11368-018-2156-3

    Article  CAS  Google Scholar 

  • Stirk WA, Ördög V, Novák O, Rolèík J, Strnad M, Bálint P, Staden J (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467

    CAS  Google Scholar 

  • Subba Roa N (2001) An appraisal of biofertilizers in India. In: Kannaiyan S (ed) The biotechnology of biofertilizers. Narosa Publishing House, New Delhi

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016a) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Int J Curr Microbiol App Sci 5:890–901

    CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016b) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 117–143

    Google Scholar 

  • Tanwar S, Sharma G, Chahar M (2003) Effect of phosphorus and biofertilizers on yield, nutrient content and uptake by black gram [Vigna mungo (L.) Hepper]. Legume Res 26:39–41

    Google Scholar 

  • Tippannavar C, Reddy T (1993) Seed treatment of wheat (Triticum aesativum L.) on the survival of seed borne Azotobacter chroococcum Karnataka. J Agric Sci 6:310–312

    Google Scholar 

  • Turan A, Kaya G, KaramanlioÄŸlu B, Pamukcu Z, Apfel C (2005) Effect of oral gabapentin on postoperative epidural analgesia. Br J Anaesth 96:242–246

    PubMed  Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla A, Srivastava P (2014) Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J Soil Sci Plant Nutr 14:889–910

    Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    Article  CAS  PubMed  Google Scholar 

  • Van Oosten MJ, Di Stasio E, Cirillo V, Silletti S, Ventorino V, Pepe O et al (2018) Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol 18:205. https://doi.org/10.1186/s12870-018-1411-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq BA (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability–a review. Molecules 21:573. pmid:27136521

    PubMed Central  Google Scholar 

  • Velivelli SLS, De Vos P, Kromann P, Declerck S, Prestwich BD (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32:493–496. https://doi.org/10.1016/j.tibtech.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  • Verma P (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–226

    CAS  Google Scholar 

  • Verma P (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    CAS  Google Scholar 

  • Verma P (2016) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci-In Press

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014a) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014b) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol App Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015a) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Microorganisms for green revolution. Springer, Singapore, pp 125–149

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 543–580

    Google Scholar 

  • Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML et al (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863

    CAS  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E et al (2009) Nutrient Imbalances in Agricultural Development. Science (80- ) 324:1519–1520. https://doi.org/10.1126/science.1170261

    Article  CAS  Google Scholar 

  • Wakeel A, Rehman H, Magen H (2017) Potash use for sustainable crop production in Pakistan: a review. Int J Agric Biol 19:381–390. https://doi.org/10.17957/IJAB/15.0291

    Article  CAS  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:1147–1158. https://doi.org/10.1016/J.MOLP.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Li Y, Dong J-L, Ding W-L (2018) First report of tomato yellow leaf curl virus and cucumber mosaic virus infecting Huoxiang (Agastache rugosa) in CHINA. J Plant Pathol 100:581–581

    Google Scholar 

  • Wani SA, Chand S, Wani MA, Ramzan M, Hakeem KR (2016) Azotobacter chroococcum – a potential biofertilizer in agriculture: an overview. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, Cham, pp 333–348

    Google Scholar 

  • Wu X, Li D, Bao Y, Zaitlin D, Miller R, Yang S (2015) Genetic dissection of disease resistance to the blue mold pathogen, Peronospora tabacina, in tobacco. Agronomy 5:555–568

    CAS  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A et al (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell 24(10):4236–4251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasari E, Patwardhan A (2007) Effects of (Azotobacter and Azospirillum) inoculants and chemical fertilizers on growth and productivity of canola (Brassica napus L.). Asian J Plant Sci 6:77–82

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:98–169

    Google Scholar 

  • Zahoor R, Dong H, Abid M, Zhao W, Wang Y, Zhou Z (2017) Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ Exp Bot 137:73–83. https://doi.org/10.1016/j.envexpbot.2017.02.002

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agric For 30:223–230

    CAS  Google Scholar 

  • Zakira F (2009) Africa’s New Path: Paul Kagame Charts a Way Forward Newsweek, July 18

    Google Scholar 

  • Zeffa DM, Perini LJ, Silva MB, de Sousa NV, Scapim CA, de Oliveira ALM et al (2019) Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One 14:e0215332. https://doi.org/10.1371/journal.pone.0215332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Google Scholar 

  • Zhang S, Moyne A-L, Reddy M, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Google Scholar 

  • Zhang S, White TL, Martinez MC, McInroy JA, Kloepper JW, Klassen W (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol Control 53:129–135

    Google Scholar 

  • Zhang J, Jiang F, Yang P, Li J, Yan G, Hu L (2015) Responses of canola (Brassica napus L.) cultivars under contrasting temperature regimes during early seedling growth stage as revealed by multiple physiological criteria. Acta Physiol Plant 37:7

    CAS  Google Scholar 

  • Zhao R, Liu LX, Zhang YZ, Jiao J, Cui WJ, Zhang B et al (2018) Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. ISME J 12:101–111. https://doi.org/10.1038/ismej.2017.136

    Article  CAS  PubMed  Google Scholar 

  • Zodape S, Gupta A, Bhandari S, Rawat U, Chaudhary D, Eswaran K, Chikara J (2011) Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill)

    Google Scholar 

  • Zohaib A, Jabbar A, Ahmad R, Basra SMA, Zohaib A, Jabbar A et al (2018) Comparative productivity and seed nutrition of cotton by plant growth regulation under deficient and adequate boron conditions. Planta Daninha:36. https://doi.org/10.1590/s0100-83582018360100040

Download references

Acknowledgments

We are grateful to the Department of Microbiology, Akal College of Basic Science, Eternal University, Himachal Pradesh, and Department of Biotechnology (DBT), Ministry of Science and Technology, for providing financial support to carry out field studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P., Solanki, A.C., Solanki, M.K., Kumari, B. (2020). Linkages of Microbial Plant Growth Promoters Toward Profitable Farming. In: Solanki, M., Kashyap, P., Kumari, B. (eds) Phytobiomes: Current Insights and Future Vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_7

Download citation

Publish with us

Policies and ethics