Skip to main content

Microbial Options Against Antibiotic-Resistant Bacteria

  • Chapter
  • First Online:
Microbial Biotechnology: Basic Research and Applications

Abstract

Antibiotics are routinely used to treat human and animal infectious diseases since the time of invention. However, due to continuous and long-term usage of antibiotics, infectious organisms naturally developed resistance over time through genetic changes. Further indiscriminate use of antibiotics in public health care is accelerating the emergence of drug-resistant bacteria. The spread of antimicrobial resistant bacteria among people, animals, food, and environment is of growing concern that requires urgent attention to control the widespread occurrence of antibiotic-resistant bacteria. Transition from antibiotics to nontraditional treatments is one option to overcome this global challenge. Small peptides like bacteriocin, synthesized by certain bacteria, showed good antimicrobial activity against pathogenic bacteria. Use of microbial cell-free probiotic along with regular antibiotics has significantly increased the antibacterial activity against multidrug-resistant bacteria. The application of phage therapy and quorum sensing inhibitors are also well-known options against antibiotic-resistant bacteria. Recent developments in genome editing showed successful cleavage of specific target gene, coding for pathogenesis or re-sensitizing pathogenic organisms for antibiotics, this strategy proves their ability to kill specific pathogenic bacteria based on their sequence rather than targeting group of bacteria. Similarly, nanotechnology has attracted worldwide interest due to its promising results in drug delivery system, and the versatile characteristics like potent antimicrobial activity of nanoparticles make it extremely outstanding candidate for the management of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afreen VR, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas aeruginosa from burnt patients. Int J Environ Sci 1:1830–1840

    Google Scholar 

  • Assadullah S, Kakru DK, Thoker MA, Bhat FA, Hussain N, Shah A (2003) Emergence of low level vancomycin resistance in MRSA. Indian J Med Microbiol 21:196–198

    CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles, 689419. https://doi.org/10.1155/2014/689419

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA (2010) Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology 156:2058–2067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos MCF, Coutinho BG, Coelho MLV (2010) Lysostaphin: a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals (Basel) 3:1139–1161

    CAS  Google Scholar 

  • Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA (2012) CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12(2):177–186

    CAS  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    CAS  PubMed  Google Scholar 

  • Borges AL, Davidson AR, Bondy-Denomy J (2017) The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu Rev Virol 4(1):37–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    CAS  PubMed  Google Scholar 

  • Brotz H, Bierbaum G, Markus A, Molitor E, Sahl HG (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39:714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention, Office of Infectious Disease (2013) Antibiotic resistance threats in the United States. Available at: http://www.cdc.gov/drugresistance/threat-report

  • Ceotto H, Holo H, Silva da Costa KF, Nascimento JS, Salehian Z, Nes IF, Bastos MCF (2010) Nukacin 3299, An antibiotic produced by Staphylococcus simulans 3299 identical to nukacin ISK-1. Vet Microbiol 146:124–131

    PubMed  Google Scholar 

  • Cerda SJ, Gomez EH, Nunez AG, Rivero IA, Ponce GY, Lopez FLZ (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 21:341–348

    Google Scholar 

  • Chanishvili N, Sharp R (2008) Bacteriophage therapy: experience from the Eliava Institute, Georgia. Microbiol Australia 29:96–101

    Google Scholar 

  • Chaudhuri GR, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Google Scholar 

  • Chitra K, Annadurai G (2013) Bioengineered silver nanobowls using Trichoderma viride and its antibacterial activity against Gram-positive and Gram-negative bacteria. J Nanostruct Chem 3:9. https://doi.org/10.1186/2193-8865-3-9

    Article  Google Scholar 

  • Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho MLV, Nascimento JS, Fagundes PC, Madureira DJ, Oliveira SS, Brito MAP, Bastos MCF (2007) Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis. Res Microbiol 158:625–630

    CAS  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    CAS  PubMed  Google Scholar 

  • De la Fuente-Salcido NM, Cataneda RJC, Garc ABE (2015) Isolation and characterization of bacteriocinogenic lactic bacteria from Tuba and Tepache, two traditional fermented beverages in México. Food Sci Nutr 3(2):1–9

    Google Scholar 

  • Denis O, Nonhoff C, Byl B, Knoop C, Bobin-Dubreux S, Struelens MJ (2002) Emergence of vancomycin-intermediate Staphylococcus aureus in a Belgian hospital: microbiological and clinical features. J Antimicrob Chemother 50:383–391

    CAS  PubMed  Google Scholar 

  • Dimitrieva-Moats GY, Unlu G (2012) Development of freeze-dried bacteriocin-containing preparations from lactic acid bacteria to inhibit Listeria monocytogenes and Staphylococcus aureus. Probiotics Antimicrob Proteins 4:27–38

    CAS  PubMed  Google Scholar 

  • Dong W, Zhu J, Guo X et al (2018) Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1. Sci Rep 8(1):6013

    PubMed  PubMed Central  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3(6)

    Google Scholar 

  • El-Shibiny A, El-Sahhar S (2017) Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can J Microbiol 63:865–879

    CAS  PubMed  Google Scholar 

  • Field D, Connor PM, Cotter PD, Hill C, Ross RP (2008) The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Mol Microbiol 69:218–230. https://doi.org/10.1111/j.1365-2958.2008.06279.x

    Article  CAS  PubMed  Google Scholar 

  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(7):S27–S33

    Google Scholar 

  • Fisher JF, Knowles JR (1978) Bacterial resistance to β-lactams: the β-lactamases. Ann Rep Med Chem 13:239–248. https://doi.org/10.1016/S0065-7743(08)60628-4

    Article  CAS  Google Scholar 

  • Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ et al (2017) Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol 7:418

    PubMed  PubMed Central  Google Scholar 

  • Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV et al (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 62:e02573-17

    PubMed  PubMed Central  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    PubMed  Google Scholar 

  • Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54(1):129–146

    CAS  PubMed  Google Scholar 

  • Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 4(2):185–191

    PubMed  PubMed Central  Google Scholar 

  • Grover N, Plaks JG, Summers SR, Chado GR, Schurr MJ, Kaar JL (2016) Acylase-containing polyurethane coatings with anti-biofilm activity. Biotechnol Bioeng 113(12):2535–2543

    CAS  PubMed  Google Scholar 

  • Guillemot DP, Courvalin, and the French Working Party to Promote Research to Control Bacterial Resistance (2001) Better control of antibiotic resistance. CID 33:542–547

    Google Scholar 

  • Gulluce M, Karaday M, Barıs O (2013) Bacteriocins: promising natural antimicrobials. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex, Extremadura, pp 1016–1027

    Google Scholar 

  • Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Doudna JA (2017) A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170(6):1224–1233.e15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan A, Hemeg (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomed 12:8211–8225

    Google Scholar 

  • Heilmann S, Krishna S, Kerr B (2015) Why do bacteria regulate public goods by quorum sensing? How the shapes of cost and benefit functions determine the form of optimal regulation. Front Microbiol 6:767. https://doi.org/10.3389/fmicb.2015.00767

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchiand Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670–1673

    CAS  PubMed  Google Scholar 

  • Hiramatsu K, Cui L, Kuroda M, Ito T (2001) The emergence and evolution of methicillin resistant Staphylococcus aureus. Trends Microbiol 9:486–493

    CAS  PubMed  Google Scholar 

  • Hu CB, Malaphan W, Zendo T, Nakayama J, Sonomoto K (2010) Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76:4542–4545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes JM (1987) Setting priorities: nationwide nosocomial infection prevention and control programs in the USA. Eur J Clin Microbiol 6:348–351

    CAS  PubMed  Google Scholar 

  • Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA (2013) Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 9(9). https://doi.org/10.1371/journal.pgen.1003844

  • Jiang Q, Chen J, Yang C, Yin Y, Yao K (2019) Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. https://doi.org/10.1155/2019/2015978

  • Jogaiah S, Kurjogi M, Abdelrahman M, Nagabhushana H, Tran L-SP (2017) Ganoderma applanatum-mediated green synthesis of silver nanoparticles: structural characterization and in vitro and in vivo biomedical and agrochemical properties. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.12.002

  • Jones CL, Sampson TR, Nakaya HI, Pulendran B, Weiss DS (2012) Repression of bacterial lipoprotein production by Francisella novicida facilitates evasion of innate immune recognition. Cell Microbiol 14(10):1531–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaliwal BB, Sadashiv SO, Kurjogi MM, Sanakal RD (2011) Prevalence and antimicrobial susceptibility of coagulase-negative Staphylococci isolated from Bovine Mastitis. Vet World 4(4):158–161

    Google Scholar 

  • Kumar N, Palmer GR, Shah V, Walker VK (2015) The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One 9:e99953

    Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2011) Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 60:205–210

    PubMed  Google Scholar 

  • Kurjogi MM, Kaliwal BB (2011) Prevalence and antimicrobial susceptibility of bacteria isolated from bovine mastitis. Adv Appl Sci Res 2(6):229–235

    CAS  Google Scholar 

  • Kurjogi MM, Sanakal RD, Kaliwal BB (2010) Antibiotic susceptibility and antioxidant activity of Staphylococcus aureus pigment staphyloxanthin on carbon tetrachloride (ccl4) induced stress in Swiss albino mice. Int J Biotechnol Appl 2(2):33–40

    Google Scholar 

  • Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava Institute. Med Mal Infect 38:426–430

    CAS  PubMed  Google Scholar 

  • Lee KX, Shameli K, Miyake M, Kuwano N, Khairudin NBA, Mohamad SEB, Yew YP (2016) Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 8489094

    Google Scholar 

  • Liu W, Ran C, Liu Z et al (2016) Effects of dietary Lactobacillus plantarum and AHL lactonase on the control of Aeromonas hydrophila infection in tilapia. Microbiol Open 5(4):687–699

    CAS  Google Scholar 

  • Louwen R, Horst-Kreft D, De Boer AG, Van Der Graaf L, De Knegt G, Hamersma M, Van Belkum A (2013) A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis 32(2):207–226

    CAS  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106:4629–4634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MJ, Clare S, Goulding D et al (2013) The agr locus regulates virulence and colonization genes in clostridium difficile 027. J Bacteriol 195(16):3672–3368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM (2008) Isolation and characterization of carnocyclina, an oval circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol 74:4756–4763

    CAS  PubMed  PubMed Central  Google Scholar 

  • McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64:439–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One 6:e16963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navaratna MA, Sahl HG, Tagg JR (1998) Two-component anti- Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64:4803–4808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219. https://doi.org/10.1159/000104750

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Zahoor A, Sharma S, Khuller GK (2003) Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb) 83:373–378

    Google Scholar 

  • Pawluk A, Staals RHJ, Taylor C, Watson BNJ, Saha S, Fineran PC, Davidson AR (2016) Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol 1(8). https://doi.org/10.1038/nmicrobiol.2016.85

  • Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16(1):12–17

    CAS  PubMed  Google Scholar 

  • Peacock JE Jr, Marsikand FJ, Wenzel RP (1980) Methicillin-resistant Staphylococcus aureus: introduction and spread within a hospital. Ann Intern Med 93:526–532

    PubMed  Google Scholar 

  • Pires DP, Vilas Boas D, Sillankorva S, Azeredo J (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89:7449–7456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, 963961. https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham. ISBN 978-3-319-42989-2. http://www.springer.com/us/book/9783319429892

  • Prasad R (2019) Plant nanobionics: approaches in nanoparticles biosynthesis and toxicity. Springer International Publishing, Cham. ISBN 978-3-030-16379-2. https://www.springer.com/gp/book/9783030163785

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing, Cham. ISBN 978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar M, Kumar V (2017) Nanotechnology: an agriculture paradigm. Springer Singapore, Singapore. ISBN 978-981-10-4573-8. http://www.springer.com/us/book/9789811045721

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Quester K, Avalos-Borja M, Castro-Longori E (2016) Controllable biosynthesis of small silver nanoparticles using fungal extract. J Biomater Nanobiotechnol 7:118–125

    CAS  Google Scholar 

  • Rauwel P, Rauwel E, Ferdov S, Singh MP (2015) Silver nanoparticles: synthesis, properties, and applications. Adv Mater Sci Eng 624394

    Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sending: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2

    Google Scholar 

  • Saha S, Chattopadhyaya D, Acharya K (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Dig J Nanomater Biostruct 6(4):1519–1528

    Google Scholar 

  • Sampson TR, Weiss DS (2014) CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Front Cell Infect Microbiol 4(37). https://doi.org/10.3389/fcimb.2014.00037

  • Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9:227–235. https://doi.org/10.1017/S1466252308001497

    Article  PubMed  Google Scholar 

  • Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, Hao H (2018) The involvement of the Cas9 gene in virulence of Campylobacter jejuni. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2018.00285

  • Shivashankar M, Premkumari B, Chandan N (2013) Biosynthesis, partial characterization and antimicrobial activities of silver nanoparticles from pleurotus species. Int J Int Sci Inn Tech Sec B 2(3):13–23

    CAS  Google Scholar 

  • Smith IM, Vickers AB (1960) Natural history of 338 treated and untreated patients with staphylococcal septicaemia. Lancet:1318–1322

    Google Scholar 

  • Smith TL, Pearson ML, Wilcox KR, Cruz C, Lancaster MV, Robinson Dunin B, Tenover EC, Zervos ML, Band ID, White E, Larvis WR (1999) Emergence of vancomycin resistance in Staphylococcus aureus. N Engl J Med 340:493–501

    CAS  PubMed  Google Scholar 

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  • Torres M, Reina JC, Fuentes-Monteverde JC et al (2018) AHL lactonase expression in three marine emerging pathogenic Vibrio spp. reduces virulence and mortality in brine shrimp (Artemia salina) and Manila clam (Venerupis philippinarum). PLoS One 13(4):e0195176

    PubMed  PubMed Central  Google Scholar 

  • Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Google Scholar 

  • Tulini FL, Lohans CT, Bordon KC, Zheng J, Arantes EC, Vederas JC (2014) Purification and characterization of antimicrobial peptides from fish isolate Carnobacterium maltaromaticum C2: carnobacteriocin X and carnolysins A1 and A2. Int J Food Microbiol 173:81–88

    CAS  PubMed  Google Scholar 

  • Vahedi A, Dallal MMS, Douraghi M, Nikkhahi F, Rajabi Z, Yousefi M et al (2018) Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett 365:fny136. https://doi.org/10.1093/femsle/fny136

    Article  CAS  PubMed  Google Scholar 

  • Vieira A, Silva YJ, Cunha A, Gomes NC, Ackermann HW, Almeida A (2012) Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur J Clin Microbiol Infect Dis 31:3241–3249

    CAS  PubMed  Google Scholar 

  • Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MRJ et al (2017) Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72:666–667

    PubMed  Google Scholar 

  • Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW et al (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47:1301–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wildschut JD, Lang RM, Voordouw JK, Voordouw G (2006) Rubredoxin: oxygen oxidoreductase enhances survival of desulfovibrio vulgaris hildenborough under microaerophilic conditions. J Bacteriol 188(17):6253–6260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA (2004) Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303:679–681

    CAS  PubMed  Google Scholar 

  • Zhang X, Ou-yang S, Wang J, Liao L, Wu R, Wei J (2018) Construction of antibacterial surface via layer-by-layer method. Curr Pharm Des 24(8):926–935

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Department of Health Research, Ministry of Family and Welfare, Government of India, New Delhi for supporting Multi-Disciplinary Research Unit at Karnataka Institute of Medical Sciences, Hubli.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurjogi, M.M., Kaulgud, R.S., Naresh, P. (2020). Microbial Options Against Antibiotic-Resistant Bacteria. In: Singh, J., Vyas, A., Wang, S., Prasad, R. (eds) Microbial Biotechnology: Basic Research and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2817-0_10

Download citation

Publish with us

Policies and ethics