Skip to main content

Production of Valuable Chemicals and Fuel Molecules from Lignin Via Fast Pyrolysis: Experimental and Theoretical Studies Using Model Compounds

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

Abstract

Lignin is the second-most abundant compound in lignocellulosic biomass (up to 30% dry weight) and a major by-product of the pulp and paper industries. Even though it is projected as a primary source of renewable phenolic compounds, its complex and highly-condensed structure with phenyl propane monomers, viz., p-hydroxyphenyl, guaiacyl, and syringyl sub-units, makes lignin conversion challenging. The use of lignin as a source of phenolic compounds is also exacerbated by its wide molecular weight distribution and branching. Pyrolysis and catalytic fast pyrolysis have emerged as promising thermochemical conversion technologies to convert lignin into phenols and aromatic hydrocarbons. Pyrolysis of lignin model compounds is valuable to unravel the mechanism of formation of phenols through the cleavage of specific linkages in lignin, and their secondary gas phase decomposition reactions. This chapter focuses on experimental and theoretical studies of free radical and concerted reactions of lignin model compounds for the production of phenolic and other aromatic compounds. The purpose of this chapter is to provide an essence of fast pyrolysis chemistry of lignin and its model compounds, and the associated reaction kinetics. Challenges in obtaining a mechanistic understanding of lignin pyrolysis are highlighted, and the need for a synergistic combination of experimental and computational studies is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The pulp and paper industry, New Zealand Institute of Chemistry, The Forestry Industry report, IV-Forestry-C-Pulp and Paper, http://nzic.org.nz/ChemProcesses/forestry/. Accessed Oct 2019.

  2. Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. New York: de Gruyter; 1989. https://doi.org/10.1002/pol.1985.130231112.

    Book  Google Scholar 

  3. Hu TQ. Chemical modification, properties and usage of lignin. New York: Kluwer Academic/Plenum Publisher; 2002.

    Book  Google Scholar 

  4. Werhan H. A process for the complete valorization of lignin into aromatic chemicals based on acidic oxidation. Ph.D. Thesis, ETH Zurich; 2013. https://doi.org/10.3929/ethz-a-009790818.

  5. Harkin JM. Lignin and its uses. Madison: U.S. Department of Agriculture, Forest Service Research Note FPL-0206; 1969.

    Google Scholar 

  6. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. Catalytic volarization of lignin for the production of renewable chemicals. Chem Rev. 2010;110:3552–99. https://doi.org/10.1021/cr900354u.

    Article  CAS  Google Scholar 

  7. Belgacem MN, Blayo A, Gandini A. Organosolv lignin as a filler in inks, varnishes and paints. Ind Crop Prod. 2003;18:145–53. https://doi.org/10.1016/S0926-6690(03)00042-6.

    Article  CAS  Google Scholar 

  8. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to non-renewable materials. J Polym Environ. 2002;10:39–48. https://doi.org/10.1023/A:1021070006895.

    Article  CAS  Google Scholar 

  9. Torre MJ, Moral A, Hernández MD, Cabeza E, Tijero A. Organosolv lignin for biofuel. Ind Crop Prod. 2013;45:58–63. https://doi.org/10.1016/j.indcrop.2012.12.002.

    Article  CAS  Google Scholar 

  10. Beis SH, Mukkamala S, Hill N, Joseph J, Baker C, Jensen B, Stemmler EA, Wheeler MC, Frederick BG, van Heiningen A, Berg AG, DeSisto WJ. Fast pyrolysis of lignins. Bioresources. 2010;5:1408–24. https://doi.org/10.15376/biores.5.3.1408-1424.

    Article  CAS  Google Scholar 

  11. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P. Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrol. 2010;88:53–72. https://doi.org/10.1016/j.jaap.2010.02.009.

    Article  CAS  Google Scholar 

  12. Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS. Catalytic fast pyrolysis of Kraft lignin with conventional, mesoporous and nanosized ZSM-5 zeolite for the production of alkyl-phenols and aromatics. Front Chem. 2018;6:1–22. https://doi.org/10.3389/fchem.2018.00295.

    Article  CAS  Google Scholar 

  13. Park S, Jae J, Farooq A, Kwon EE, Park ED, Ha JM, Jung SC, Park YK. Continuous pyrolysis of organosolv lignin and application of biochar on gasification of high-density polyethylene. Appl Energy. 2019;255:113801. https://doi.org/10.1016/j.apenergy.2019.113801.

    Article  CAS  Google Scholar 

  14. Galkin MV, Dahlstrand C, Samec JS. Mild and robust redox-neutral Pd/C-catalyzed lignol β-O-4 bond cleavage through a low energy barrier pathway. ChemSusChem. 2015;8:2187–92. https://doi.org/10.1002/cssc.201500117.

    Article  CAS  Google Scholar 

  15. Lan W, Amiri MT, Hunston CM, Luterbacher JS. Protection group effects during α, γ-diol lignin stabilization promote high-selectivity monomer production. Angew Chem Int Ed. 2018;57:1356–60. https://doi.org/10.1002/anie.201710838.

    Article  CAS  Google Scholar 

  16. Luo M, Lin H, Li B, Dong Y, He Y, Wang L. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour Technol. 2018;259:312–8. https://doi.org/10.1016/j.biortech.2018.03.075.

    Article  CAS  Google Scholar 

  17. Morgan HM Jr, Bu Q, Liang J, Liu Y, Mao H, Shi A, Lei H, Ruan R. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour Technol. 2017;230:112–21. https://doi.org/10.1016/j.biortech.2017.01.059.

    Article  CAS  Google Scholar 

  18. Regmi YN, Mann JK, McBride JR, Tao J, Barnes CE, Labbé N, Chmely SC. Catalytic transfer hydrogenolysis of Organosolv lignin using B-containing FeNi alloyed catalysts. Catal Today. 2018;302:190–5. https://doi.org/10.1016/j.cattod.2017.05.051.

    Article  CAS  Google Scholar 

  19. Xu L, Yao Q, Zhang Y, Fu Y. Integrated production of aromatic amines and n-doped carbon from lignin via ex situ catalytic fast pyrolysis in the presence of ammonia over zeolites. ACS Sustain Chem Eng. 2017;5:2960–9. https://doi.org/10.1021/acssuschemeng.6b02542.

    Article  CAS  Google Scholar 

  20. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel. 2006;20:848–89. https://doi.org/10.1021/ef0502397.

    Article  CAS  Google Scholar 

  21. Lasa HD, Salaices E, Mazumder J, Lucky R. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev. 2011;111:5404–33. https://doi.org/10.1021/cr200024w.

    Article  CAS  Google Scholar 

  22. Zhou X, Broadbelt LJ, Vinu R. Mechanistic understanding of thermo chemical conversion of polymers and lignocellulosic biomass. In: Van Geem K, editor. Advances in chemical engineering: thermochemical process engineering, vol. 49. London: Elsevier; 2016. p. 95–198. https://doi.org/10.1016/bs.ache.2016.09.002.

    Chapter  Google Scholar 

  23. Kang S, Li X, Fan J, Chang J. Hydrothermal conversion of lignin: a review. Renew Sust Energy Rev. 2013;27:546–58. https://doi.org/10.1016/j.rser.2013.07.013.

    Article  CAS  Google Scholar 

  24. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol. 2001;79:277–99. https://doi.org/10.1016/S0960-8524(00)00180-2.

    Article  CAS  Google Scholar 

  25. Huang J, He C. Pyrolysis mechanism of α-O-4 linkage lignin dimer: a theoretical study. J Anal Appl Pyrol. 2015;113:655–64. https://doi.org/10.1016/j.jaap.2015.04.012.

    Article  CAS  Google Scholar 

  26. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110:3552–99.. https://pubs.acs.org/doi/10.1021/cr900354u

    Article  CAS  Google Scholar 

  27. Gellerstedt G, Henriksson G. Lignins: major sources, structures and properties. Amsterdam: Elsevier; 2008. https://doi.org/10.1016/B978-0-08-045316-3.00009-0.

    Book  Google Scholar 

  28. Mutturi S, Palmqvist B, Lidén G. Developments in bioethanol fuel-focused biorefineries. In: Waldron K, editor. Advances in biorefineries: biomass and waste supply chain exploitation. Cambridge: Woodhead Publishing; 2014. p. 259–302. https://doi.org/10.1533/9780857097385.1.259.

    Chapter  Google Scholar 

  29. Capanema EA, Balakshin MY, Kadla JF. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem. 2005;53:9639–49. https://doi.org/10.1021/jf0515330.

    Article  CAS  Google Scholar 

  30. Chakar FS, Ragauskas AJ. Review of current and future softwood Kraft lignin process chemistry. Ind Crop Prod. 2004;20:131–41. https://doi.org/10.1016/j.indcrop.2004.04.016.

    Article  CAS  Google Scholar 

  31. McKendry P. Energy production from biomass (part 2): overview of biomass. Bioresour Technol. 2002;83:37–46. https://doi.org/10.1016/S0960-8524(01)00119-5.

    Article  CAS  Google Scholar 

  32. Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renew Sust Energ Rev. 2000;1:1–73. https://doi.org/10.1016/S1364-0321(99)00007-6.

    Article  Google Scholar 

  33. Van Loo S, Koppejan J. The handbook of biomass combustion and co-firing. London: Earthscan; 2010.

    Google Scholar 

  34. Fang X, Jia L. Experimental study on ash fusion characteristics of biomass. Bioresour Technol. 2012;104:769–74. https://doi.org/10.1016/j.biortech.2011.11.055.

    Article  CAS  Google Scholar 

  35. Steen EV, Claeys M. Fisher-Tropsch catalysts for the biomass-to-liquid (BTL) process. Chem Eng Technol. 2008;31:655–60. https://doi.org/10.1002/ceat.200800067.

    Article  CAS  Google Scholar 

  36. McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour Technol. 2002;83:55–63. https://doi.org/10.1016/S0960-8524(01)00120-1.

    Article  CAS  Google Scholar 

  37. Balat M. Sustainable transportation fuels from biomass materials. Energy Edu Sci Technol. 2006;17:83–103.

    CAS  Google Scholar 

  38. Yu H, Wu Z, Chen G. Catalytic gasification characteristics of cellulose, hemicellulose and lignin. Renew Energy. 2018;121:559–67. https://doi.org/10.1016/j.renene.2018.01.047.

    Article  CAS  Google Scholar 

  39. Wu C, Wang Z, Huang J, Williams PT. Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel. 2013;106:697–706. https://doi.org/10.1016/j.fuel.2012.10.064.

    Article  CAS  Google Scholar 

  40. Azadi P, Inderwildi OR, Farnood R, King DA. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energy Rev. 2013;21:506–23. https://doi.org/10.1016/j.rser.2012.12.022.

    Article  CAS  Google Scholar 

  41. Mermelstein J, Millan M, Brandon NP. The interaction of biomass gasification syngas components with tar in a solid oxide fuel cell and operational conditions to mitigate carbon deposition on nickel-gadolinium doped ceria anodes. J Power Sources. 2011;196:5027–34. https://doi.org/10.1016/j.jpowsour.2011.02.011.

    Article  CAS  Google Scholar 

  42. Nagel FP, Ghosh S, Pitta C, Schildhauer TJ, Biollaz S. Biomass integrated gasification fuel cell systems-concept development and experimental results. Biomass Bioenergy. 2011;35:354–62. https://doi.org/10.1016/j.biombioe.2010.08.057.

    Article  CAS  Google Scholar 

  43. Tekin K, Karagöz S, Bektaş S. A review of hydrothermal biomass processing. Renew Sust Energy Rev. 2014;40:673–87. https://doi.org/10.1016/j.rser.2014.07.216.

    Article  CAS  Google Scholar 

  44. Peterson AA, Vogel F, Lachance RP, Froling M, Antal JM Jr, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub and supercritical water technologies. Energy Environ Sci. 2008;1:32–65. https://doi.org/10.1039/B810100K.

    Article  CAS  Google Scholar 

  45. Zhang B, Keitz M, Valentas K. Thermochemical liquefaction of high-diversity grassland perennial. J Anal Appl Pyrol. 2009;84:18–24. https://doi.org/10.1016/j.jaap.2008.09.005.

    Article  CAS  Google Scholar 

  46. Kang S, Li X, Fan J, Chang J. Classified separation of lignin hydrothermal liquefied products. Ind Eng Chem Res. 2011;50:11288–96. https://doi.org/10.1021/ie2011356.

    Article  CAS  Google Scholar 

  47. Wahyudiono Sasaki M, Goto M. Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem Eng Process. 2008;47:1609–19. https://doi.org/10.1016/j.cep.2007.09.001.

    Article  CAS  Google Scholar 

  48. Zhao C, Jiang E, Chen A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J Energy Inst. 2017;90:902–13. https://doi.org/10.1016/j.joei.2016.08.004.

    Article  CAS  Google Scholar 

  49. Balat M, Kirtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers Manag. 2009;50:3147–57. https://doi.org/10.1016/j.enconman.2009.08.014.

    Article  CAS  Google Scholar 

  50. Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization. Bioresour Technol. 1992;42:219–31. https://doi.org/10.1016/0960-8524(92)90025-S.

    Article  CAS  Google Scholar 

  51. Demirbas A. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Convers Manag. 2002;43:1801–9. https://doi.org/10.1016/S0196-8904(01)00137-6.

    Article  CAS  Google Scholar 

  52. Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemi-celluloses and lignin. Renew Sust Energ Rev. 2014;38:594–608. https://doi.org/10.1016/j.rser.2014.06.013.

    Article  CAS  Google Scholar 

  53. Carrier M, Windt M, Ziegler B, Appelt J, Saake B, Meier D, Bridgwater A. Quantitative insights into the fast pyrolysis of extracted cellulose, hemicellulose and lignin. ChemSusChem. 2017;10:3212–24. https://doi.org/10.1002/cssc.201700984.

    Article  CAS  Google Scholar 

  54. Lin X, Sui S, Tan S, Pittman CU Jr, Sun J, Zhang Z. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies. 2015;8:5107–21. https://doi.org/10.3390/en8065107.

    Article  CAS  Google Scholar 

  55. Nair V, Vinu R. Production of guaiacols via catalytic fast pyrolysis of alkali lignin using titania, zirconia and ceria. J Anal Appl Pyrol. 2016;119:31–9. https://doi.org/10.1016/j.jaap.2016.03.020.

    Article  CAS  Google Scholar 

  56. Asmadi M, Kawamoto H, Saka S. Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates. J Anal Appl Pyrol. 2011;92:76–87. https://doi.org/10.1016/j.jaap.2011.04.012.

    Article  CAS  Google Scholar 

  57. Huang X, Liu C, Huang J, Li H. Theory studies on pyrolysis mechanism of phenethyl phenyl ether. Comput Theor Chem. 2011;976:51–9. https://doi.org/10.1016/j.comptc.2011.08.001.

    Article  CAS  Google Scholar 

  58. Britt PF, Buchanan AC, Cooney MJ, Martineau DR. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. J Org Chem. 2000;65:1376–89. https://doi.org/10.1021/jo991479k.

    Article  CAS  Google Scholar 

  59. Windt M, Meier D, Marsman JH, Heeres HJ, de Koning S. Micro-pyrolysis of technical lignins in a new modular rig and product analysis by GC-MS/FID and GC × GC-TOFMS/FID. J Anal Appl Pyrol. 2009;85:38–46. https://doi.org/10.1016/j.jaap.2008.11.011.

    Article  CAS  Google Scholar 

  60. Patwardhan PR, Brown RC, Shanks BH. Understanding the fast pyrolysis of lignin. ChemSusChem. 2011;4:1629–36. https://doi.org/10.1002/cssc.201100133.

    Article  CAS  Google Scholar 

  61. Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol. 2010;91:1446–58. https://doi.org/10.1016/j.fuproc.2010.05.022.

    Article  CAS  Google Scholar 

  62. Zhang M, Moutsoglou A. Catalytic fast pyrolysis of prairie cordgrass lignin and quantification of products by pyrolysis-gas chromatography-mass spectrometry. Energy Fuel. 2014;28:1066–73. https://doi.org/10.1021/ef401795z.

    Article  CAS  Google Scholar 

  63. Ma Z, Troussard E, Bokhoven JAV. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal A Gen. 2012;423-424:130–6. https://doi.org/10.1016/j.apcata.2012.02.027.

    Article  CAS  Google Scholar 

  64. Branca C, Giudicianni P, Di Blasi C. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Ind Eng Chem Res. 2003;42:3190–202. https://doi.org/10.1021/ie030066d.

    Article  CAS  Google Scholar 

  65. Hosoya T, Kawamoto H, Saka S. Secondary reactions of lignin-derived primary tar components. J Anal Appl Pyrol. 2008;83:78–87. https://doi.org/10.1016/j.jaap.2008.06.003.

    Article  CAS  Google Scholar 

  66. Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res. 2006;45:4486–93. https://doi.org/10.1021/ie0514049.

    Article  CAS  Google Scholar 

  67. Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrol. 2008;82:170–7. https://doi.org/10.1016/j.jaap.2008.03.007.

    Article  CAS  Google Scholar 

  68. Kawamoto H. Lignin pyrolysis reactions. J Wood Sci. 2017;63:117–32. https://doi.org/10.1007/s10086-016-1606-z.

    Article  CAS  Google Scholar 

  69. Lou R, Wu S, Lyu G. Quantified monophenols in the bio-oil derived from lignin fast pyrolysis. J Anal Appl Pyrol. 2015;111:27–32. https://doi.org/10.1016/j.jaap.2014.12.022.

    Article  CAS  Google Scholar 

  70. Jiang G, Nowakowski DJ, Bridgwater AV. Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuel. 2010;24:4470–5. https://doi.org/10.1021/ef100363c.

    Article  CAS  Google Scholar 

  71. Zhang M, Resende FLP, Moutsoglou A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS. Fuel. 2014;116:358–69. https://doi.org/10.1016/j.fuel.2013.07.128.

    Article  CAS  Google Scholar 

  72. Lee HW, Kim TH, Park SH, Jeon JK, Suh DJ, Park YK. Catalytic fast pyrolysis of lignin over mesoporous Y zeolite using Py-GC/MS. J Nanosci Nanotechnol. 2013;13:2640–6. https://doi.org/10.1166/jnn.2013.7421.

    Article  CAS  Google Scholar 

  73. Li X, Su L, Wang Y, Yu Y, Wang C, Li X, Wang Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front Environ Sci Eng. 2012;6:295–303. https://doi.org/10.1007/s11783-012-0410-2.

    Article  CAS  Google Scholar 

  74. Wang K, Kim KH, Brown RC. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 2014;16:727–35. https://doi.org/10.1039/C3GC41288A.

    Article  CAS  Google Scholar 

  75. Ma Z, Custodis V, Bokhoven JAV. Selective deoxygenation of lignin during catalytic fast pyrolysis. Cat Sci Technol. 2014;4:766–72. https://doi.org/10.1039/C3CY00704A.

    Article  CAS  Google Scholar 

  76. Santana JA Jr, Carvalho WS, Ataỉde CH. Catalytic effect of ZSM-5 zeolite and HY-340 niobic acid on the pyrolysis of industrial Kraft lignins. Ind Crop Prod. 2018;111:126–32. https://doi.org/10.1016/j.indcrop.2017.10.023.

    Article  CAS  Google Scholar 

  77. Jackson MA, Compton DL, Boateng AA. Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrol. 2009;85:226–30. https://doi.org/10.1016/j.jaap.2008.09.016.

    Article  CAS  Google Scholar 

  78. Kim JY, Lee JH, Park J, Kim JK, An D, Song IK, Choi JW. Catalytic pyrolysis of lignin over HZSM-5 catalysts: effect of various parameters on the production of aromatic hydrocarbons. J Anal Appl Pyrol. 2015;114:273–80. https://doi.org/10.1016/j.jaap.2015.06.007.

    Article  CAS  Google Scholar 

  79. Atul M, Jayant E. Pyrolysis of purified Kraft lignin in the presence of AlCl3 and ZnCl2. J Environ Chem Eng. 2013;1:844–9. https://doi.org/10.1016/j.jece.2013.07.026.

    Article  CAS  Google Scholar 

  80. Peng C, Zhang G, Yue J, Xu G. Pyrolysis of lignin for phenols with alkaline additive. Fuel Process Technol. 2014;124:212–21. https://doi.org/10.1016/j.fuproc.2014.02.025.

    Article  CAS  Google Scholar 

  81. Greeley J. Theoretical heterogeneous catalysis: scaling relationships and computational catalysts design. Annu Rev Chem Biomol Eng. 2016;7:605–35. https://doi.org/10.1146/annurev-chembioeng-080615-034413.

    Article  Google Scholar 

  82. Dorrestijn E, Mulder P. The radical-induced decomposition of 2-methoxyphenol. J Chem Soc Perkin Trans. 1999;2:777–80. https://doi.org/10.1039/A809619H.

    Article  Google Scholar 

  83. Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J Anal Appl Pyrol. 2011;92:88–98. https://doi.org/10.1016/j.jaap.2011.04.011.

    Article  CAS  Google Scholar 

  84. Shin EJ, Nimlos MR, Evans RJ. A study of the mechanisms of vanillin pyrolysis by mass spectrometry and multivariate analysis. Fuel. 2001;80:1689–96. https://doi.org/10.1016/S0016-2361(01)00055-2.

    Article  CAS  Google Scholar 

  85. Liu C, Deng Y, Wu S, Mou H, Liang J, Lie M. Study on pyrolysis mechanism of three guaiacyl-type lignin monomeric model compounds. J Anal Appl Pyrol. 2016;118:123–9. https://doi.org/10.1016/j.jaap.2016.01.007.

    Article  CAS  Google Scholar 

  86. Chen L, Ye X, Luo F, Shao J, Lu Q, Fang Y, Wang X, Chen H. Pyrolysis mechanism of β-O-4 type lignin model dimer. J Anal Appl Pyrol. 2015;115:103–11. https://doi.org/10.1016/j.jaap.2015.07.009.

    Article  CAS  Google Scholar 

  87. Jiang XY, Lu Q, Ye XN, Hu B, Dong CQ. Experimental and theoretical studies on the pyrolysis mechanism of β-1-type lignin dimer model compound. Bioresources. 2016;11:6232–43. https://doi.org/10.15376/biores.11.3.6232-6243.

    Article  CAS  Google Scholar 

  88. Vinu R, Broadbelt LJ. A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci. 2012;5:9808–26. https://doi.org/10.1039/C2EE22784C.

    Article  CAS  Google Scholar 

  89. Zhou X, Nolte MW, Mayes HB, Shanks BH, Broadbelt LJ. Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates: experiments and development of a detailed mechanistic model. Ind Eng Chem Res. 2014;53:13274–89. https://doi.org/10.1021/ie502259w.

    Article  CAS  Google Scholar 

  90. Burnham AK, Zhou X, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuel. 2015;29:2906–18. https://doi.org/10.1021/acs.energyfuels.5b00350.

    Article  CAS  Google Scholar 

  91. Zhou X, Li W, Mabon R, Broadbelt LJ. A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ Sci. 2018;11:1240–60. https://doi.org/10.1039/C7EE03208K.

    Article  CAS  Google Scholar 

  92. Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC. Theoretical study of unimolecular decomposition of catechol. J Phys Chem A. 2009;114:1060–7. https://doi.org/10.1021/jp909025s.

    Article  CAS  Google Scholar 

  93. Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Pelucchi M, Ranzi E. Detailed kinetics of pyrolysis and combustion of catechol and guaiacol, as reference components of bio-oil from biomass. Chem Eng Trans. 2018;65:79–84. https://doi.org/10.3303/CET1865014.

    Article  Google Scholar 

  94. Liu C, Zhang Y, Huang X. Study of guaiacol pyrolysis mechanism based on density functional theory. Fuel Process Technol. 2014;123:159–65. https://doi.org/10.1016/j.fuproc.2014.01.002.

    Article  CAS  Google Scholar 

  95. Huang J, Li X, Wu D, Tong H, Li W. Theoretical studies on pyrolysis mechanism of guaiacol as a lignin model compound. J Renew Sust Energy. 2013;5:043112. https://doi.org/10.1063/1.4816497.

    Article  CAS  Google Scholar 

  96. Huang J, Liu C, Ren L, Tong H, Li WM, Wu D. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry. J Fuel Chem Technol. 2013;41:657–66. https://doi.org/10.1016/S1872-5813(13)60031-6.

    Article  CAS  Google Scholar 

  97. Wang M, Liu C, Xu X, Li Q. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis. Chem Phys Lett. 2016;654:41–5. https://doi.org/10.1016/j.cplett.2016.03.058.

    Article  CAS  Google Scholar 

  98. Huang J, Liu C, Wu D, Tong H, Ren L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound. J Anal Appl Pyrol. 2014;109:98–108. https://doi.org/10.1016/j.jaap.2014.07.007.

    Article  CAS  Google Scholar 

  99. Pelucchi M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Ranzi E. Detailed kinetics of substituted phenolic species in pyrolysis bio-oils. React Chem Eng. 2019;4:490–506. https://doi.org/10.1039/C8RE00198G.

    Article  CAS  Google Scholar 

  100. Ince A, Carstensen HH, Sabbe M, Reyniers MF, Marin GB. Group additive modeling of substituent effects in monocyclic aromatic hydrocarbon radicals. AIChE J. 2017;63:2089–106. https://doi.org/10.1002/aic.15588.

    Article  CAS  Google Scholar 

  101. Akazawa M, Kojima Y, Kato Y. Reaction mechanisms for pyrolysis of benzaldehydes. Bull Faculty Agric Niigata Univ. 2014;67:59–65.

    Google Scholar 

  102. Huang J, Liu C, Tong H, Li W, Wu D. A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin. Comput Theor Chem. 2014;1045:1–9. https://doi.org/10.1016/j.comptc.2014.06.009.

    Article  CAS  Google Scholar 

  103. Beste A, Buchanan AC III. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J Org Chem. 2009;74:2837–41. https://doi.org/10.1021/jo9001307.

    Article  CAS  Google Scholar 

  104. Beste A, Buchanan AC III. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers. Energy Fuel. 2010;24:2857–67. https://doi.org/10.1021/ef1001953.

    Article  CAS  Google Scholar 

  105. Beste A, Buchanan AC III, Harrison RJ. Computational prediction of α/β selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers. J Phys Chem A. 2008;112:4982–8. https://doi.org/10.1021/jp800767j.

    Article  CAS  Google Scholar 

  106. Choi YS, Singh R, Zhang J, Balasubramanian G, Sturgeon MR, Katahira R, Chupka G, Beckham GT, Shanks BH. Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chem. 2016;18:1762–73. https://doi.org/10.1039/C5GC02268A.

    Article  CAS  Google Scholar 

  107. Kim KH, Bai X, Brown RC. Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis. J Anal Appl Pyrol. 2014;110:254–63. https://doi.org/10.1016/j.jaap.2014.09.008.

    Article  CAS  Google Scholar 

  108. Huang J, He C, Liu C, Tong H, Wu L, Wu S. A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer. Comput Theor Chem. 2015;1054:80–7. https://doi.org/10.1016/j.comptc.2014.12.007.

    Article  CAS  Google Scholar 

  109. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S. Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett. 2011;2:2660–6. https://doi.org/10.1021/jz201201q.

    Article  CAS  Google Scholar 

  110. Elder T, Beste A. Density functional theory study of the concerted pyrolysis mechanism for lignin models. Energy Fuel. 2014;28:5229–35. https://doi.org/10.1021/ef5013648.

    Article  CAS  Google Scholar 

  111. Klein MT, Virk PS. Modeling of lignin thermolysis. Energy Fuel. 2008;22:2175–82. https://doi.org/10.1021/ef800285f.

    Article  CAS  Google Scholar 

  112. Kawamoto H, Horigoshi S, Saka S. Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer. J Wood Sci. 2007;53:268–71. https://doi.org/10.1007/s10086-006-0839-7.

    Article  CAS  Google Scholar 

  113. Kawamoto H, Horigoshi S, Saka S. Pyrolysis reactions of various lignin model dimers. J Wood Sci. 2007;53:168–74. https://doi.org/10.1007/s10086-006-0834-z.

    Article  CAS  Google Scholar 

  114. Jiang X, Lu Q, Dong X, Hu B, Dong C. Theoretical study on the effect of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds. J Fuel Chem Technol. 2016;44:335–41. https://doi.org/10.1016/S1872-5813(16)30017-2.

    Article  CAS  Google Scholar 

  115. Beste A, Buchanan AC. Computational study of bond dissociation enthalpies for lignin model compounds: substituent effects in phenethyl phenyl ether. J Org Chem. 2009;74:2837–41. https://doi.org/10.1021/jo9001307.

    Article  CAS  Google Scholar 

  116. Huang JB, Wu SB, Cheng H, Lei M, Liang JJ, Tong H. Theoretical study of bond dissociation energies for lignin model compounds. J Fuel Chem Technol. 2015;43:429–36. https://doi.org/10.1016/S1872-5813(15)30011-6.

    Article  CAS  Google Scholar 

  117. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modelling of the thermal degradation of lignins. Biomass Bioenergy. 2010;34:290–301. https://doi.org/10.1016/j.biombioe.2009.10.018.

    Article  CAS  Google Scholar 

  118. Dussan K, Dooley S, Monaghan RFD. A model of the chemical composition and pyrolysis kinetics of lignin. Proc Combust Inst. 2019;37:2697–704. https://doi.org/10.1016/j.proci.2018.05.149.

    Article  CAS  Google Scholar 

  119. Yanez AJ, Li W, Mabon R, Broadbelt LJ. A stochastic method to generate libraries of structural representations of lignin. Energy Fuel. 2016;30:5835–45. https://doi.org/10.1021/acs.energyfuels.6b00966.

    Article  CAS  Google Scholar 

  120. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuel. 2008;22:4292–300. https://doi.org/10.1021/ef800551t.

    Article  CAS  Google Scholar 

  121. Ranzi E, Debiagi PEA, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note 1: kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng. 2017;5:2867–81. https://doi.org/10.1021/acssuschemeng.6b03096.

    Article  CAS  Google Scholar 

  122. Yanez AJ, Natarajan P, Li W, Mabon R, Broadbelt LJ. Coupled structural and kinetic model of lignin fast pyrolysis. Energy Fuel. 2018;32:1822–30. https://doi.org/10.1021/acs.energyfuels.7b03311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vinu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yerrayya, A., Natarajan, U., Vinu, R. (2020). Production of Valuable Chemicals and Fuel Molecules from Lignin Via Fast Pyrolysis: Experimental and Theoretical Studies Using Model Compounds. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_3

Download citation

Publish with us

Policies and ethics