Skip to main content

Simplified Perspective of Complex Insect–Plant Interactions

  • Chapter
  • First Online:
Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology

Abstract

Scientific literature pertaining to the investigations on insect–plant interactions spans more than a century. This is a challenging frontier area today as it was for the pioneers, and it would continue to be so for researchers in their pursuit to help elucidate the complex relationship between the insects and plants. Despite the ready availability of exhaustive literature on this subject, the mechanisms of insect–plant interactions are still not completely understood. Insect–plant interaction is an extremely rich subject that transcends several disciplines of science and has far-reaching implications, especially in the management of ecosystem and crop protection. The interaction between pests and plants starts at the interface of plasma membrane and in response to perception of a pest and release of herbivore-associated molecular patterns (HAMPs); plants respond quickly by setting up the electrical signalling followed by depolarization of membrane, leading to increase in Ca2+ ion concentration and activation of calcium-sensing proteins. Further, this interaction is primarily governed by various signalling mechanisms, such as mitogen-activated kinase (MAP-kinase), jasmonic acid (JA), salicylic acid (SA) and ethylene (ET)-based pathways that regulate changes in gene and protein expression leading to synthesis of defensive compounds. Plants defend themselves not only by direct means but also by indirect means, wherein plants emit volatiles to attract natural enemies of the herbivores. Herein, we summarize the molecular and ecological aspects of complex insect–plant interactions to enable researchers to direct their course of action towards addressing them for making a meaningful contribution in this field, which will have far reaching implications in the success of insect pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal AA, Hastings AP, Johnson MT, Maron JL, Salminen JP (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338:113–116

    Article  CAS  PubMed  Google Scholar 

  • Anderson JT, Mitchell-Olds T (2011) Ecological genetics and genomics of plant defences: evidence and approaches. Funct Ecol 25:312–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell WJ (1990) Searching behavior patterns in insects. Annu Rev Entomol 35:447–467

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host plant selection by phytophagous insects. Chapman and Hall, New York

    Book  Google Scholar 

  • Bernays EA, Jarzembowski EA, Malcolm SB (1991) Evolution of insect morphology in relation to plants. Philos Trans R Soc B Biol Sci 333:257–264

    Article  Google Scholar 

  • Bruce TJA (2010) Tackling the threat to food security caused by crop pests in the new millennium. Food Sec 2:133–141

    Article  Google Scholar 

  • Bruce TJA (2015) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot 66:455–465

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry 72:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA, Pickett JA (2007) Stressful memories of plants. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Calatayud P, Sauvion N, Thiéry D (2018) Plant-insect interactions- ecology-Oxford bibliographies. https://doi.org/10.1093/OBO/9780199830060-0193

  • Carvalho MG, Bortolotto OC, Ventura MU (2017) Aromatic plants affect the selection of host tomato plants by Bemisia tabaci biotype B. Entomol Exp Appl 162:86–92

    Article  CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Augustin P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Crane PR, Marie EF, Pedersen KR (1995) The origin and early diversification of the angiosperms. Nature 374:27–33

    Article  CAS  Google Scholar 

  • Darwin CR (1862) On the various contrivances by which British and foreign orchids are fertilized by insects, and on the good effects of intercrossing. John Murray, London

    Google Scholar 

  • Darwin CR (1899) The various contrivances by which orchids are fertilized by insects, 2d edn. John Murray, London

    Book  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsies Book 9:e0156

    Google Scholar 

  • Dethier VG (1941) Chemical factors determining the choice of food plants by Papilio larvae. Am Nat 75:61–73

    Article  Google Scholar 

  • Duffey SS (1980) Sequestration of plant natural products by insects. Annu Rev Entomol 25:447–477

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Erb M, Reymond P (2019) Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol 70:527–557

    Article  CAS  PubMed  Google Scholar 

  • Fabre J-H (1879) Etudes sur l’instinct et les moeurs des insectes. Souvenirs Entomologiques. Librairie Ch. Delagrave, Paris

    Google Scholar 

  • Follett PA (2017) Insect-plant interactions: host selection, herbivory, and plant resistance – an introduction. Entomologia Experimentalis et Apeplicata Special Issue – Insect-Plant Interactions: Host Selection, Herbivory, And Plant Resistance, 162: 1-3

    Google Scholar 

  • Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 129:1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Fritz RS, Simms EL (1992) Plant resistance to herbivores and pathogens. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Giron D, Dubreuil G, Bennett A, Dedeine F, Dicke M, Dyer LA, Erb M, Harris MO, Huguet E, Kaloshian I, Kawakita A, Lopez-Vaamonde C, Palmer TM, Petanidou T, Poulsen M, Salle A, Simon JC, Terblanche JS, Thiery D, Whiteman NK, Woods HA, Pincebourde S (2018) Promises and challenges in insect-plant interactions (16th International symposium on insect-plant relationships). Entomol Exp Appl 166:319–343

    Article  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect proof plants. Nat Biotechnol 25:1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Han B, Zhang Q-H, Byers JA (2012) Attraction of the tea aphid, Toxoptera aurantii, to combinations of volatiles and colors related to tea plants. Entomol Exp Appl 144:258–269

    Article  Google Scholar 

  • Hare JD (2012) How insect herbivores drive the evolution of plants. Science 338:50–51

    Article  CAS  PubMed  Google Scholar 

  • Harris MO, Friesen TL, Xu SS, Chen MS, Giron D, Stuart J (2015) Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress. J Exp Bot 66:513–531

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M (2016) Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat Commun 7:11644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Chen F, Chen S, Lv G, Deng Y, Fang W, Liu Z, Guan Z, He C (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168:687–693

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Jorunn IB (2011) Effector proteins that modulate insect-plant interactions. Curr Opin Plant Biol 14:422–428

    Article  CAS  PubMed  Google Scholar 

  • Hopkins AD (1916) Economic investigations of the scolytid bark and timber beetles of North America. In: US Department of Agriculture, 353 (ed) US Department of Agriculture Program of Work for 2017. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Jinwon K, Quaghebeur H, Felton GW (2011) Reiterative and interruptive signaling in induced plant resistance to chewing insects. Phytochemistry 72:1624–1634

    Article  CAS  Google Scholar 

  • Johnson MTJ (2011) Evolutionary ecology of plant defences against herbivores. Funct Ecol 25:305–311

    Article  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35:441–453

    Article  CAS  PubMed  Google Scholar 

  • Kergoat GJ, Meseguer A, Jousselin E (2017) Evolution of insect-plant interactions: insights from macroevolutionary approaches in plants and herbivorous insects. In: Sauvion N, Calatayud P-a, Thiéry D (eds) Insect-plant interactions in a crop protection perspective, Advances in Botanical Research 81. Academic Press, London, pp 25–54

    Chapter  Google Scholar 

  • Kevan P, Shipp L (2011) Biological control and biotechnological amelioration in managed ecosystems. Compr Biotechnol 4:757–761

    Google Scholar 

  • Labandeira CC (2006) The four phases of plant-arthropod associations in deep time. Geol Acta 4:409–438

    Google Scholar 

  • Labandeira CC (2013) A paleobiologic perspective on plant-insect interactions. Curr Opin Plant Biol 16:414–421

    Article  PubMed  Google Scholar 

  • Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  CAS  PubMed  Google Scholar 

  • Labandeira CC, Kvacek J, Mostovski MB (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–695

    Article  Google Scholar 

  • Lieutier F, Bermudez-Torres K, Cook J (2017) From plant exploitation to mutualism. In: Sauvion N, Calatayud P-a, Thiéry D (eds) Insect-plant interactions in a crop protection perspective, Advances in Botanical Research 81. Academic Press, London, pp 55–109

    Chapter  Google Scholar 

  • Lipke H, Fraenkel GS (1956) Insect nutrition. Annu Rev Entomol 1:17–44

    Article  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Arimura G, Mithöfer A (2012) Natural elicitors, effectors and modulators of plant responses. Nat Prod Rep 29:1288–1303

    Article  CAS  PubMed  Google Scholar 

  • Mithoefer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  Google Scholar 

  • Nel A (1997) The probabilistic inference of unknown data in phylogenetic analysis. Mémoires du Muséum national d’histoire naturelle 173:305–327

    Google Scholar 

  • Paine TD, Kenneth RR, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  CAS  PubMed  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. The Macmillan Company, New York

    Book  Google Scholar 

  • Pedigo LP (1999) Entomology and pest management, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  • Peñalver E, Labandeira CC, Barrón E (2012) Thrips pollination of Mesozoic gymnosperms. Proc Nat Acad Sci U S A 109:8623–8628

    Article  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Prado JR, Segers G, Voelker T, Carson D, Dobert R (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790

    Article  CAS  PubMed  Google Scholar 

  • Reichstein T, von Joseph E, Parsons JA, Rothschild M (1968) Heart poisons in the monarch butterfly. Science 161:861–866

    Article  CAS  PubMed  Google Scholar 

  • Renner T, Specht CD (2013) Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Curr Opin Plant Biol 16:436–442

    Article  CAS  PubMed  Google Scholar 

  • Reymond P (2013) Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KN (1969) Patterns of insect-plant relationships determining susceptibility or resistance of different plants to an insect. Entomol Exp Appl 12:751–766

    Article  Google Scholar 

  • Schatz, B., Sauvion, N., Kjellberg, N. & Nel, A. 2017. Insect-plant interactions: a palaeontological and an evolutionary perspective. In Insect-plant interactions in a crop protection perspective. Sauvion, N., Calatayud, Paul-andré & Thiéry, D. (Eds). Advances in Botanical Research 81. Academic Press, London, pp. 1-24

    Google Scholar 

  • Schoonhoven LM, Dethier VG (1966) Sensory aspects of host-plant discrimination by lepidopteraous larvae. Arch Néerl Zool 16:497–530

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Scott MI, Thaler SJ, Scott GF (2010) Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defense in tomato. J Chem Ecol 36:490–499

    Article  CAS  PubMed  Google Scholar 

  • Seger J, Brockmann JH (1987) What is bet-hedging? In: Harvey PH, Partridge L (eds) Oxford surveys in evolutionary biology, vol 4. Oxford University Press, Oxford, pp 182–211

    Google Scholar 

  • Snelling RO (1941) Resistance of plants to insect attack. Bot Rev 7:543–586

    Article  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89

    Article  Google Scholar 

  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  CAS  PubMed  Google Scholar 

  • Tumlinson JH, Lewis WJ, Louise EMV (1993) How parasitic wasps find their hosts. Sci Am

    Google Scholar 

  • van Veen FFJ, Morris RJ, Godfray CJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208

    Article  PubMed  CAS  Google Scholar 

  • Varshney AK (1998) Certain aspects of the behavioural responses of maize stem borer, Chilo partellus (swinhoe) to certain maize cultivars in relation to their susceptibility and resistance, Ph.D. thesis, University of Delhi, India

    Google Scholar 

  • Varshney AK, Singh AK (2000) Effect of maize leaf extracts on the feeding responses of Chilo partellus (Swinhoe) larvae. J Entomol Res 24(3):207–211

    Google Scholar 

  • Varshney AK, Babu R, Singh AK, Agarwal HC, Jain SC (2003) Ovipositional responses of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) to natural products from leaves of two maize (Zea mays L.) cultivars. J Agric Food Chem 51(14):4008–4012

    Article  CAS  PubMed  Google Scholar 

  • Varshney AK, Singh AK, Agarwal HC (2007) Orientational responses of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) to leaf volatiles of two maize (Zea mays L.) cultivars. Int J Trop Insect Sci 27(1):15–20

    Article  Google Scholar 

  • Viallanes H (1887) Etudes histologiques et organologiques sur les centres nerveux et les organes des sens des animaux articulés. Masson, Paris

    Google Scholar 

  • von Frisch K (1953) The dancing bees: an account of the life and senses of the honey bee. Harcourt, Brack, New York

    Google Scholar 

  • Wang X, Hu L, Zhou G, Cheng J, Lou Y (2011) Salicylic acid and ethylene signaling pathways are involved in production of rice trypsin proteinase inhibitors induced by the leaf folder Cnaphalocrocis medinalis (Guenée). Chin Sci Bull 56:2351–2358

    Article  CAS  Google Scholar 

  • War AR, Taggar, GK, Hussain, B, Taggar, MS, Nair, RM, Sharma, HC (2018) Plant defence against herbivory and insect adaptations. AoB Plants 10: ply037.

    Google Scholar 

  • Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457

    Article  Google Scholar 

  • Yuan Y-W, Byers KJRP, Bradshaw HD Jr (2013) The genetic control of flower-pollinator specificity. Curr Opin Plant Biol 16:422–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HM, Bernonville TD, Body M, Glévarec G, Reichelt M, Unsicker SB, Bruneau M, Renou J, Huguet ET, Dubreuil G, Giron D (2016) Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J Insect Physiol 84:114–127

    Article  CAS  PubMed  Google Scholar 

  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Prot 28:435–442

    Article  CAS  Google Scholar 

  • Zhou W, Kügler A, McGale E, Haverkamp A, Knaden M, Guo H, Beran F, Yon F, Li R, Lackus N, Kollner TG, Bing J, Schuman MC, Hansson BS, Baldwin IT, Xu S (2017) Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores. Curr Biol 27:1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA (2012) Natural enemies drive geographic variation in plant defenses. Science 338:116–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AVS gratefully acknowledges the guidance and mentorship of her Ph.D. guide, Prof. A.K. Singh (Retd.) at the Insect Behavior Laboratory, Department of Zoology, University of Delhi, India. Valuable inputs in respect of the molecular aspects of insect–plant interactions by Dr Anjana Singha Naorem, Assistant Professor, Cotton University, Assam, are gratefully acknowledged. She also expresses her thanks and gratitude to Dr. Anju Srivastava, Principal, Hindu College, University of Delhi, for providing all the necessary support and encouragement during the course of writing this chapter. VM is thankful to the colleagues who helped in providing literature resources for the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Varshney Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A.V., Mishra, V. (2021). Simplified Perspective of Complex Insect–Plant Interactions. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_16

Download citation

Publish with us

Policies and ethics