Skip to main content

Modelling and Analysis of Predation System with Nonlocal and Nonsingular Operator

  • Chapter
  • First Online:
Mathematical Modelling in Health, Social and Applied Sciences

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

A novel system of predation involving two individuals or species which interact in a nonlinear fashion is modelled with the Atangana-Baleanu fractional derivative of order \(0<\gamma <1\) in the sense of Caputo. This derivative has been used to model some important real-life phenomena such as heat flow, fractals, diffusion and groundwater flows, among many others. The local and global stability analysis of such model is given to enable us to accurately provide a good choice of parameters when numerically simulating the full process. Some numerical results for different instances of fractional power are given in one and two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  Google Scholar 

  2. K.M. Owolabi, K.C. Patidar, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)

    MathSciNet  MATH  Google Scholar 

  3. J.D. Murray, Mathematical Biology I: An Introduction (Springer, New York, 2002)

    Book  Google Scholar 

  4. A.M. Turing, The chemical basis for morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  5. E.J. Crampin, E. Gaffney, P.K. Maini, Reaction and diffusion growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120 (1999)

    Article  Google Scholar 

  6. E.J. Crampin, E. Gaffney, P.K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J. Math. Biol. 44, 107–128 (2002)

    Article  MathSciNet  Google Scholar 

  7. P.K. Maini, D.L. Benson, J.A. Sherratt, Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9, 197–213 (1992)

    Article  MathSciNet  Google Scholar 

  8. T. Miura, P.K. Maini, Speed of pattern appearance in reaction-diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649 (2004)

    Article  MathSciNet  Google Scholar 

  9. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, New York, 2003)

    Book  Google Scholar 

  10. R.A. Satnoianu, M. Menzinger, P.K. Maini, Turing instabilities in general systems. J. Math. Biol. 41, 493–512 (2000)

    Article  MathSciNet  Google Scholar 

  11. K.M. Owolabi, J.F. Gómez-Aguilar, B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel. Chaos Soliton. Fract. 125, 54–63 (2019)

    Article  MathSciNet  Google Scholar 

  12. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, CA, 1999)

    MATH  Google Scholar 

  13. B.S.T. Alkahtani, Chua’s circuit model with Atangana-Baleanu derivative with fractional order. Chaos Soliton. Fract. 89, 547–551 (2016)

    Article  MathSciNet  Google Scholar 

  14. M.A. Dokuyucu, D. Baleanu, E. Çelik, Analysis of Keller-Segel model with Atangana-Baleanu fractional derivative. Filomat 32, 5633–5643 (2018)

    Article  MathSciNet  Google Scholar 

  15. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Yverdon, 1993)

    MATH  Google Scholar 

  16. B.I. Henry, S.L. Wearne, Fractional reaction-diffusion. Phys. A 276, 448–455 (2000)

    Article  MathSciNet  Google Scholar 

  17. K.M. Owolabi, Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative. Chaos Soliton. Fract. 115, 127–134 (2018)

    Article  MathSciNet  Google Scholar 

  18. K.M. Owolabi, Numerical patterns in system of integer and non-integer order derivatives. Chaos Soliton. Fract. 115, 143–153 (2018)

    Article  MathSciNet  Google Scholar 

  19. K.M. Owolabi, Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives. Chaos Soliton. Fract. 115, 160–169 (2018)

    Article  MathSciNet  Google Scholar 

  20. K.M. Owolabi, Numerical solutions and pattern formation process in fractional diffusion-like equations, in Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering, ed. by J.F. Gómez, L. Torres, R.F. Escobar (Springer, Switzerland, 2019), pp. 195–216

    Chapter  Google Scholar 

  21. K.M. Owolabi, Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives. Chaos Soliton. Fract. 122, 89–101 (2019)

    Article  MathSciNet  Google Scholar 

  22. K.M. Owolabi, E. Pindza, Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discr. Contin. Dyn. Syst. Ser. S 12, 835–851 (2019)

    Google Scholar 

  23. K.M. Owolabi, H. Dutta, Numerical solution of space-time-fractional reaction-diffusion equations via the Caputo and Riesz derivatives, in Mathematics Applied to Engineering, Modelling, and Social Issues, ed. by F.T. Smith, H. Dutta, J.N. Mordeson (Springer, Switzerland, 2019), pp. 161–188

    Chapter  Google Scholar 

  24. K.M. Owolabi, Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discr. Contin. Dyn. Syst. Ser. S 12, 543–566 (2019)

    MathSciNet  MATH  Google Scholar 

  25. M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fract. Differ. Appl. 2, 1–11 (2016)

    Article  Google Scholar 

  26. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  27. D. Baleanu, B. Shiri, Collocation methods for fractional differential equations involving non-singular kernel. Chaos Soliton. Fract. 116, 136–145 (2018)

    Article  MathSciNet  Google Scholar 

  28. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin et al., Mittag-Leffler Functions Related Topics and Applications (Springer, Berlin, Heidelberg, 2016)

    MATH  Google Scholar 

  29. H. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211, 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  30. D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    Article  MathSciNet  Google Scholar 

  31. I. Koca, Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives. Chaos Soliton. Fract. 116, 278–286 (2018)

    Article  MathSciNet  Google Scholar 

  32. A.A. Kilbas, M. Saigo, R. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Trans. Spec. Funct. 15, 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  33. A. Atangana, K.M. Owolabi, New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13, 3 (2018)

    Article  MathSciNet  Google Scholar 

  34. M. Alves, F. Hilker, Hunting cooperation and Allee effects in predators. J. Theoret. Biol. 419, 13–22 (2017)

    Article  MathSciNet  Google Scholar 

  35. R. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations (Wiley, Chichester, UK, 2003)

    MATH  Google Scholar 

  36. C. Tian, Z. Ling, Z. Lin, Turing pattern formation in a predator-prey-mutualist system. Nonlinear Anal. Real World Appl. 12, 3224–3237 (2011)

    Article  MathSciNet  Google Scholar 

  37. P.H. Thrall, M.E. Hochberg, J.J. Burdon, J.D. Bever, Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007)

    Article  Google Scholar 

  38. P.Y.H. Pang, M.X. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245–273 (2004)

    Article  MathSciNet  Google Scholar 

  39. M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008)

    Article  Google Scholar 

  40. K.M. Owolabi, K.C. Patidar, Numerical simulations of multicomponent ecological models with adaptive methods. Theoret. Biol. Med. Model. 13, 1 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owolabi, K.M., Dutta, H. (2020). Modelling and Analysis of Predation System with Nonlocal and Nonsingular Operator. In: Dutta, H. (eds) Mathematical Modelling in Health, Social and Applied Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2286-4_8

Download citation

Publish with us

Policies and ethics