Skip to main content

Adaptive Strategies of Plants Under Adverse Environment: Mitigating Effects of Antioxidant System

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

Variation in plant adaptive strategies to the diversity and variability of the environmental factors is the key to plant developmental success. Climate change phenomenon may be considered as one of the important factors of the adverse environment since it may lead to visible changes in rainfall and temperature in the global as well as regional aspects. Under the conditions of such an unfavorable environment, plants increase the production of reactive forms of oxygen which further trigger disequilibrium between their production and removal. To control the production of reactive oxygen species (ROS), higher plants possess the ROS detoxification system which includes enzymatic and non-enzymatic antioxidant components that remove ROS and protect plant cells from oxidative damage. This chapter provides main information on ROS generation, redox balance, and plant protection in the view of ecophysiological adaptations to the adverse environment with a special focus on the antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1O2:

Singlet oxygen

AOX:

Alternative oxidase

A-POX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

Cu/Zn-SOD:

Copper/zinc superoxide dismutase

ETC:

Electron transport chain

Fe-SOD:

Iron superoxide dismutase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

H2O2:

Hydrogen peroxide

Mn-SOD:

Manganese superoxide dismutase

O2•−:

Superoxide anion radical

OH•:

Hydroxyl radical

PAL:

Phenylalanine ammonium lyase enzyme

PSI:

Photosystem I

PSII:

Photosystem II

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    CAS  PubMed  Google Scholar 

  • Agati G, Brunetti C, Ferdinando MD, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45

    CAS  PubMed  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athar H, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    CAS  Google Scholar 

  • Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJ, Chen J, Kramer DM, He SY, Howe GA (2014) Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol 165:1302–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayaz AF, Kadioglu A, Turgut R (1999) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Can J Plant Sci 80:373–378

    Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331:806–814

    CAS  Google Scholar 

  • Bakhshi D, Arakawa O (2006) Induction of phenolic compounds biosynthesis with light irradiation in the flesh of red and yellow apples. J Appl Hortic 8:101–104

    Google Scholar 

  • Balabusta M, Szafranska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575. https://doi.org/10.3389/fpls.2016.00575

    Article  Google Scholar 

  • Baque MA, Lee EJ, Paek KY (2010) Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia: the role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep 29:685–694

    Google Scholar 

  • Barta C, Kálai T, Hideg K, Vass I, Hideg É (2004) Differences in the ROS generating efficacy of various ultraviolet wavelengths in detached spinach leaves. Funct Plant Biol 31:23–28

    CAS  PubMed  Google Scholar 

  • Bartoli MG, Simontacchi M, Tambussi E, Beltrano J, Montaldi J, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect of antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383

    CAS  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    CAS  PubMed  Google Scholar 

  • Bela K, Riyazuddin R, Horváth E, Hurton Á, Gallé Á, Takács Z, Zsigmond L, Szabados L, Tari I, Csiszár J (2018) Comprehensive analysis of antioxidant mechanisms in Arabidopsis glutathione peroxidase-like mutants under salt-and osmotic stress reveals organ-specific significance of the AtGPXL’s activities. Environ Exp Bot 150:127–140

    CAS  Google Scholar 

  • Cansev A, Gulen H, Eris A (2011) The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Hortic Environ Biotechnol 52:113–120

    CAS  Google Scholar 

  • Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L (2018) Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front Plant Sci 9:273

    PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceulemans R, Mousseau M (1994) Effects of elevated CO2 in woody plants. New Phytol 127:425–446

    Google Scholar 

  • Chamnongpol S, Willekens H, Moder W, Langebartels C, Sondermann H, Van Montagu M, Inzé D, Van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic plants. Proc Natl Acad Sci U S A 95:5818–5823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chelli-Chaabouni A (2014) Mechanisms and adaptation of plants to environmental stress: a case of Woody species. In: Ahmad P, Wani M (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, NY

    Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24:383–394

    CAS  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3:156–165

    PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70

    Google Scholar 

  • Davey MW, Montagu MV, Inzé D (2002) Ascorbate metabolism and stress. In: Inzé D, Montago MV (eds) Oxidative stress in plants. Taylor and Francis Publishers, New York, pp 271–296

    Google Scholar 

  • Depège N, Varenne M, Boyer N (2000) Induction of oxidative stress and GPX-like protein activation in tomato plants after mechanical stimulation. Physiol Plant 110:209–214

    Google Scholar 

  • Dixon R, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrikova AG, Apostolova EL (2015) Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH. J Plant Physiol 184:98–105

    CAS  PubMed  Google Scholar 

  • Du H, Zhou P, Huang B (2013) Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environ Exp Bot 87:159–166

    CAS  Google Scholar 

  • Edreva A, Velikova V, Tonsev T, Dagnon S, Gurel A, Aktas L, Gesheva E (2008) Metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78

    CAS  Google Scholar 

  • Espanany A, Fallah S, Tadayyon A (2016) Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Ind Crop Prod 79:195–204

    CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    PubMed  PubMed Central  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471

    PubMed  PubMed Central  Google Scholar 

  • Farrant JM, Bailly C, Leymarie J, Hamman B, Côme D, Corbineau F (2004) Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Physiol Plant 120:563–574

    CAS  PubMed  Google Scholar 

  • Figueroa-Yáñez L, Cano-Sosa J, Castaño E, Arroyo-Herrera AL, Caamal-Velazquez JH, Sanchez-Teyer F, López-Gómez R, Santos-Briones CDL, Rodríguez-Zapata L (2012) Phylogenetic relationships and expression in response to low temperature of a catalase gene in banana (Musa acuminata cv. “Grand Nain”) fruit. PCTOC 109:429–438

    Google Scholar 

  • Fletcher SR, Slimmon T, Kott SL (2010) Environmental factors affecting the accumulation of rosmarinic acid in spearmint (Mentha spicata L.) and peppermint (Mentha piperita L.). Open Agric J 4:10–16

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    PubMed  PubMed Central  Google Scholar 

  • Gao JJ, Qin AG, Yu XC (2009) Effects of grafting on cucumber leaf SOD and CAT gene expression and activities under low temperature stress. Chin J Appl Ecol 20:213–217

    CAS  Google Scholar 

  • Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crop Prod 64:175–181

    Google Scholar 

  • Ghasemzadeh A, Jaafar ZEH, Rahmat A, Wahab MEP, Halim ARM (2010) Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int J Mol Sci 11:3885–3897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Girotto E, Ceretta CA, Rossato LV, Farias JG, Brunetto G, Miotto A, Tiecher TL, de Konti L, Lourenzi CR, Schmatz R, Giachini A, Nikoloso TF (2016) Biochemical changes in black oat (Avena strigosa Schreb) cultivated in vineyard soils contaminated with copper. Plant Physiol Biochem 103:199–207

    CAS  PubMed  Google Scholar 

  • Gomes MP, Garcia QS (2013) Reactive oxygen species and seed germination. Biologia 68:351–357

    CAS  Google Scholar 

  • Gomes MP, Carneiro MMLC, Nogueira COG, Soares AM, Garcia QS (2012) The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn. Acta Physiol Plant 35:1011–1022

    Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77

    CAS  PubMed  Google Scholar 

  • Gupta M, Bhaskar PB, Sriram S, Wang PH (2017) Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep 36:637–652

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103

    PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Google Scholar 

  • Ho LH, Giraud E, Uggalla V, Lister R, Clifton R, Glen A, Thirkettle-Watts D, Van Aken O, Whelan J (2008) Identification of regulatory pathways controlling gene expression of stress responsive mitochondrial proteins in Arabidopsis. Plant Physiol 147:1858–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M (2018) Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front Plant Sci 9:1445

    PubMed  PubMed Central  Google Scholar 

  • Hou X, Rivers J, León P, McQuinn RP, Pogson BJ (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21:792–803

    CAS  PubMed  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439. https://doi.org/10.3389/fpls.2016.00439

    Article  PubMed  PubMed Central  Google Scholar 

  • Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, Mähönen AP, Kangasjärvi J, Wrzaczek M (2014) The Arabidopsis thaliana cysteine-rich receptor-like Kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochem Biophys Res Commun 445:457–462

    PubMed  Google Scholar 

  • Jakovljević D, Stanković M, Bojović B, Topuzović M (2017a) Regulation of early growth and antioxidant defense mechanism of sweet basil seedlings in response to nutrition. Acta Physiol Plant 39:243

    Google Scholar 

  • Jakovljević D, Topuzović M, Stanković M, Bojović B (2017b) Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Hortic Environ Biotechnol 58:240–246

    Google Scholar 

  • Jakovljević D, Topuzović M, Stanković M (2019) Nutrient limitation as a tool for the induction of secondary metabolites with antioxidant activity in basil cultivars. Ind Crop Prod 138:111462. https://doi.org/10.1016/j.indcrop.2019.06.025

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Jasim H, Zhao AJ, Shao CX, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Google Scholar 

  • Jung BG, Lee KO, Lee SS, Chi YH, Jang HH, Kang SS, Lee K, Lim D, Yoon SC, Yun DJ, Inoue Y, Cho MJ, Lee SY (2002) A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J Biol Chem 277:12572–12578

    CAS  PubMed  Google Scholar 

  • Kalisz A, Pokluda R, Jezdinský A, Sękara A, Grabowska A, Gil J, Neugebauerová J (2016) Chilling-induced changes in the antioxidant status of basil plants. Acta Physiol Plant 38:196

    Google Scholar 

  • Khan MAM, Ulrichs C, Mewis I (2010) Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomol Exp App 137:229–236

    CAS  Google Scholar 

  • Koç E, İşlek C, Üstün SA (2010) Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. GU J Sci 23:1–6

    Google Scholar 

  • Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C (2008) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37(suppl_1):D261–D266

    PubMed  PubMed Central  Google Scholar 

  • Kranner I, Colville LE (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    CAS  Google Scholar 

  • Kukavica B, Morina F, Janjić N, Boroja M, Jovanović L, Veljović-Jovanović S (2013) Effects of mixed saline and alkaline stress on the morphology and anatomy of Pisum sativum L.: the role of peroxidase and ascorbate oxidase in growth regulation. Arch Biol Sci 65:265–278

    Google Scholar 

  • Kumar S (2016) Understanding altered molecular dynamics in the targeted plant species in Western Himalaya in relation to environmental cues: implications under climate change scenario. In: Nuteja N, Gill SS (eds) Abiotic stress response in plants. Wiley-VCH, India, pp 25–56

    Google Scholar 

  • Kumar JSP, Prasad RS, Banerjee R, Thammineni C (2015) Seed birth to death: dual actions of reactive oxygen species in seed physiology. Ann Bot 116:663–668

    CAS  Google Scholar 

  • Kyoro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York. https://doi.org/10.1007/978-1-4614-0815-4_1

    Chapter  Google Scholar 

  • Landi M, Pardossi A, Remorini D, Guidi L (2013) Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ Exp Bot 85:64–75

    CAS  Google Scholar 

  • Larbat R, Paris C, Le Bot J, Adamowicz S (2014) Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. Plant Sci 224:62–73

    CAS  PubMed  Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VM, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54–62

    CAS  Google Scholar 

  • Li X, Yang Y, Sun X, Lin H, Chen J, Ren J, Hu X, Yang Y (2014) Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS One 9(9):e107605

    PubMed  PubMed Central  Google Scholar 

  • Lin KH, Huang HC, Lin CY (2010) Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rep 29:575–593

    CAS  PubMed  Google Scholar 

  • Macovei A, Pagano A, Leonetti P, Carbonera D, Balestrazzi A, Araújo SS (2017) Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits. Plant Cell Rep 36:669–688

    CAS  PubMed  Google Scholar 

  • Marchese AJ, Ferreira FSJ, Rehder LGV, Rodrigues O (2010) Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz J Plant Physiol 22:1–9

    Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276

    CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy JS, Kopsell DA (2009) Physiological role of carotenoids and other antioxidants in plants and application to turfgrass stress management. NZ J Crop Hortic Sci 37:327–333

    CAS  Google Scholar 

  • Meijkamp B, Aerts R, van de Staaij J, Tosserams M, Ernest WHO, Rozema J (1999) Effects of UV-B on secondary metabolites in plants. In: Rozema J (ed) Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems. Backhuys Publishers, Leiden, Netherlands, pp 71–99

    Google Scholar 

  • Méller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Milić BL, Djilas SM, Čanadanović-Brunet JM (1998) Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem 61:443–447

    Google Scholar 

  • Mir BA, Mir SA, Khazir J, Tonfack LB, Cowan DA, Vyas D, Koul S (2015) Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.) Dunal. Ind Crop Prod 74:1008–1016

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    CAS  PubMed  Google Scholar 

  • Mondoni A, Rossi G, Orsenigo S, Probert RJ (2012) Climate warming could shift the timing of seed germination in alpine plants. Ann Bot 110:155–164

    PubMed  PubMed Central  Google Scholar 

  • Morgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TC, Nicolas S, Fernie AR, Fricker MD, George Ratcliffe R, Sweetlove LJ, Finkemeier I (2008) Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol 147:101–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munne-Bosch S, Algere L (2003) Drought induced changes in the redox state of a tocopherol, ascorbate and the diterpene carnosic acid in the chloroplasts of labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Oh M, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191

    CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscissic acid signaling in guard cells. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Pennycooke CJ, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia x hybrida). Environ Exp Bot 53:225–232

    CAS  Google Scholar 

  • Pergo EM, Ishii-Iwamoto EL (2011) Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. J Chem Ecol 37:500–513

    CAS  PubMed  Google Scholar 

  • Polesskaya OG, Kashirina EI, Alekhina ND (2004) Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russ J Plant Physiol 51:615–620

    CAS  Google Scholar 

  • Polesskaya OG, Kashirina EI, Alekhina ND (2006) Effect of salt stress on antioxidant system of plants as related to nitrogen nutrition. Russ J Plant Physiol 53:186–192

    CAS  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169

    CAS  Google Scholar 

  • Reddy AR, Raghavendra AS (2006) Photooxidative stress. In: Rao MKV, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 157–186

    Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    CAS  PubMed  Google Scholar 

  • Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP (2003) Glutathione per-oxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueño MC, Luis A, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    PubMed  PubMed Central  Google Scholar 

  • Rosental L, Nonogaki H, Fait A (2014) Activation and regulation of primary metabolism during seed germination. Seed Sci Res 24:1–15

    CAS  Google Scholar 

  • Sainz M, Diaz P, Monza J, Borsani O (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol Plant 140:46–56

    CAS  PubMed  Google Scholar 

  • Sandorf I, Hollander-Czytko H (2002) Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta 216:173–179

    CAS  PubMed  Google Scholar 

  • Scandalios JG, Acevedo A, Ruzsa S (2000) Catalase gene expression in response to chronic high temperature stress in maize. Plant Sci 156:103–110

    CAS  PubMed  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2009) Plant ecology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    CAS  PubMed  Google Scholar 

  • Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, Peak KY (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41:1179–1185

    CAS  Google Scholar 

  • Sreenivasulu N (2017) Systems biology of seeds: deciphering the molecular mechanisms of seed storage, dormancy and onset of germination. Plant Cell Rep 36:633–635

    CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    CAS  Google Scholar 

  • Stanković MS, Nićiforović N, Mihailović V, Topuzović M, Solujić S (2012) Antioxidant activity, total phenolic content and flavonoid concentrations of different plant parts of Teucrium polium L. subsp. polium. Acta Soc Bot Pol 81:117–122

    Google Scholar 

  • Szabó B, Lakatos A, Koszegi T, Botz L (2008) Investigation of abiogenic stress-induced alterations in the level of secondary metabolites in poppy plants (Papaver somniferum L.). Acta Biol Hung 59:425–438

    PubMed  Google Scholar 

  • Tegeder M, Weber APM (2006) Metabolite transporters in the control of plant primary metabolism. In: Plaxton WC, McManus MT (eds) Annual plant reviews control of primary metabolism in plants. Blackwell Publishing, Oxford, UK. https://doi.org/10.1002/9780470988640.ch4

    Chapter  Google Scholar 

  • Valizadeh J, Ziaei SM, Mazloumzadeh SM (2014) Assessing climate change impacts on wheat production (a case study). J Saudi Soc Agric Sci 13:107–115

    Google Scholar 

  • Van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ, Araújo WL, Nunes-Nesi A, Fernie AR (2011) Regulation of respiration in plants: a role for alternative metabolic pathways. J Plant Physiol 168:1434–1443

    PubMed  Google Scholar 

  • Vander Wall BS, Jenkins HS (2011) Plant-animal interactions and climate: why do yellow pine chipmunks (Tamias amoenus) and eastern chipmunks (Tamias striatus) have such different effects on plants? Ecoscience 18:130–137

    Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    CAS  PubMed  Google Scholar 

  • Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J (2002) Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Chang Biol 8:1240–1252

    Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    CAS  PubMed  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161

    Google Scholar 

  • Wang X, Quinn PJ (2000) The location and function of vitamin E in membranes. Mol Membr Biol 17:143–156

    PubMed  Google Scholar 

  • Wang QL, Chen JH, He NY, Guo FQ (2018) Metabolic reprogramming in chloroplasts under heat stress in plants. Int J Mol Sci 19:849

    PubMed Central  Google Scholar 

  • Wongsheree T, Ketsa S, van Doorn WG (2009) The relationship between chilling injury and membrane damage in lemon basil (Ocimum × citriodourum) leaves. Postharvest Biol Technol 51:91–96

    CAS  Google Scholar 

  • Yamaguchi J, Iwamoto T, Kida S, Masushige S, Yamada K, Esashi T (2001) Tocopherol associated protein is a ligand dependent transcriptional activator. Biochem Biophys Res Commun 285:295–299

    Google Scholar 

  • Yoshikawa M, Luo W, Tanaka G, Konishi Y, Matsuura H, Takahashi K (2018) Wounding stress induces phenylalanine ammonia lyases, leading to the accumulation of phenylpropanoids in the model liverwort Marchantia polymorpha. Phytochemistry 155:30–36

    CAS  PubMed  Google Scholar 

  • Zhang X, Liu CJ (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Stanković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jakovljević, D., Stanković, M. (2020). Adaptive Strategies of Plants Under Adverse Environment: Mitigating Effects of Antioxidant System. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_8

Download citation

Publish with us

Policies and ethics