Skip to main content

Nanotechnology Applications in Gastric Cancer

  • Chapter
  • First Online:
Theranostics Approaches to Gastric and Colon Cancer

Part of the book series: Diagnostics and Therapeutic Advances in GI Malignancies ((DTAGIM))

  • 424 Accesses

Abstract

The Gastric cancer (GC) is the third deadliest malignant disease worldwide. The most common conventional therapies include the use of anticancer drugs; however, their use is ineffective and is limited due to the poor solubility of the drug and its ability to damage the immune system, since anticancer drugs have a small therapeutic drug, overdosing can lead to the toxicity in the systemic organs such as lung, liver and kidneys. Nanotechnology, which has been developed about a decade ago is considered to be a more advantageous therapy compared to the conventional methods for the therapy of cancers like GC. Varied type of nanoparticles that are multifunctional are now used to enhance the solubility and effectiveness of the drug for the treatment, prevention and diagnosis with the annual clinical trials. Moreover, they are biocompatible and less toxic to the normal healthy cells. The organic and inorganic nanoparticles that are used in the cancer diagnosis and drug delivery system include lipid, protein, metal and polymer-based materials. This chapter gives an overview on the types of nanoparticle used in the research for the GC therapy. Additionally, we have briefly described the combinational approaches, including gene therapy and immunotherapy, along with nanoparticles that includes antibody mediated, enzyme and ligand mediated strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AlPcS4:

Aluminum phthalocyanine chloride tetrasulfonic acid

AuNC:

Gold nanocages

BCRP:

Breast cancer resistant protein

BRET:

Bioluminescence resonance energy transfer

CIC:

Cancer initiating cells

CL-NA:

Cationic liposome nucleic acid

CSC:

Cancer stem cells

CT:

Computed tomography

DAC:

Deoxycytidine

DFC:

Farnesiferol C with dendrosome

DPA:

Diphenyl amine

EBVaGC:

Epstein-barr virus associated GC

ECM:

Extracellular matrix

FA:

Folic acid

FR:

Folate receptor

FTIR:

Fourier transform infrared spectroscopy

GC:

Gastric cancer

His6:

Histidine tag

ICG:

Indocyanine green loaded mesoporous silica

LOX:

Lysyl oxidase

mAb:

Monoclonal antibody

MBA:

Mercapto benzoic acid

MET:

Methionine

MMP:

Matric metalloproteins

MPA:

Mercapto propionic acid

MRI:

Magnetic resonance imaging

PAGA:

Pluronic-poly[α-(4-aminobutyl)-1-glycolic acid]

PAMAM:

Polyamidoamine

PBA:

Phenylboronic acid

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

PET:

Positron emission tomography

PLGA:

Poly(D, L-lactide-co-glycolide acid)

QD:

Quantum dots

rBSA:

Reduced bovine serum albumin

rLuc:

Renilla luciferase

ROS:

Reactive oxygen species

SATB1:

AT rich sequence binding protein 1

SERS:

Surface enhanced raman scatterings

SPION:

Superparamagnetic iron oxide nanoparticle

TF:

Tissue factor

TPA:

Two photon absorption

References

  • Aas Z, Babaei E, Feizi MAH, Dehghan G (2015) Anti-proliferative and apoptotic effects of dendrosomal farnesiferol C on gastric cancer cells. Asian Pac J Cancer Prev 16:5325–5329

    Article  PubMed  Google Scholar 

  • Ahmed N (2005) 23 years of the discovery of helicobacter pylori: is the debate over? BioMed Central

    Google Scholar 

  • Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip PA, Sarkar FH (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6:e17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Zeev M, Assaraf YG, Livney YD (2016) β-Casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 7:23322

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Zeev M, Kelmansky D, Assaraf YG, Livney YD (2018) β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. Eur J Pharm Biopharm 133:240–249

    Article  CAS  PubMed  Google Scholar 

  • Barzegar Behrooz A, Nabavizadeh F, Adiban J, Shafiee Ardestani M, Vahabpour R, Aghasadeghi MR, Sohanaki H (2017) Smart bomb AS 1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol 44:41–51

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Qian K, Zuo X, Yue W, Bian Y, Yang J, Wei J, Zhao W, Qian H, Liu B (2019) PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J Biomater Appl 33:1394–1406

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Zhang A, Huang Z, Chen Y, Zhang Q, Cui D (2019) Monodisperse Au@ Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta 198:45–54

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang W, Lian G, Qian C, Wang L, Zeng L, Liao C, Liang B, Huang B, Huang K (2012) Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomedicine 7:359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C, Huang K, Shuai X (2013) Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol 48:809–821

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med 55:1919–1922

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Li S-Y, Malik HT, Ma Y-G, Xu H, Sun L-K (2016) Organic two-photon nanoparticles modulate reactive oxygen species, intracellular calcium concentration, and mitochondrial membrane potential during apoptosis of human gastric carcinoma SGC-7901 cells. Biotechnol Lett 38:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Dou Z, Xu Y, Sun H, Liu Y (2012) Synthesis of PEGylated fullerene–5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil. Nanoscale 4:4624–4630

    Article  CAS  PubMed  Google Scholar 

  • Fernandes E, Ferreira D, Peixoto A, Freitas R, Relvas-Santos M, Palmeira C, Martins G, Barros A, Santos LL, Sarmento B (2019) Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int J Pharm 570:118646

    Article  CAS  PubMed  Google Scholar 

  • Fornaro L, Lucchesi M, Caparello C, Vasile E, Caponi S, Ginocchi L, Masi G, Falcone A (2011) Anti-HER agents in gastric cancer: from bench to bedside. Nat Rev Gastroenterol Hepatol 8:369

    Article  CAS  PubMed  Google Scholar 

  • Fortunato L, Rushton L (2015) Stomach cancer and occupational exposure to asbestos: a meta-analysis of occupational cohort studies. Br J Cancer 112:1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Li Z, Yan J, Wang P (2017) Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther 11:2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraldo DA, Duran-Lara EF, Aguayo D, Cachau RE, Tapia J, Esparza R, Yacaman MJ, Gonzalez-Nilo FD, Santos LS (2011) Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells. Anal Bioanal Chem 400:483–492

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DS, Vijayalakshmi N, Swaan PW, Ghandehari H (2011) G3. 5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J Control Release 150:318–325

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Iwata C, Saito H, Ishii K, Hayashi T, Yashiro M, Hirakawa K, Miyazono K, Kato Y, Kano MR (2012) NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo. Int J Nanomedicine 7:2713

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Zhao X, Gao J, Fan L, Yang G, Cho W, Chen H (2012) Quantum dots-based immunofluorescent imaging of stromal fibroblasts caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer. Int J Mol Sci 13:13764–13780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu N, Yin JF, Ji Z, Hong Y, Wu P, Bian B, Song Z, Li R, Liu Q, Wu F (2017) Strengthening gastric cancer therapy by trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cell Physiol Biochem 44:2158–2173

    Article  CAS  PubMed  Google Scholar 

  • Imano M, Yasuda A, Itoh T, Satou T, Peng Y-F, Kato H, Shinkai M, Tsubaki M, Chiba Y, Yasuda T (2012) Phase II study of single intraperitoneal chemotherapy followed by systemic chemotherapy for gastric cancer with peritoneal metastasis. J Gastrointest Surg 16:2190–2196

    Article  PubMed  Google Scholar 

  • Ishigami H, Kitayama J, Kaisaki S, Hidemura A, Kato M, Otani K, Kamei T, Soma D, Miyato H, Yamashita H (2009) Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol 21:67–70

    Article  PubMed  Google Scholar 

  • Ishigami H, Kitayama J, Kaisaki S, Yamaguchi H, Yamashita H, Emoto S, Nagawa H (2010) Phase I study of biweekly intravenous paclitaxel plus intraperitoneal cisplatin and paclitaxel for gastric cancer with peritoneal metastasis. Oncology 79:269–272

    Article  CAS  PubMed  Google Scholar 

  • Kataoka H, Mori Y, Shimura T, Nishie H, Natsume M, Mochizuki H, Hirata Y, Sobue S, Mizushima T, Sano H (2016) A phase II prospective study of the trastuzumab combined with 5-weekly S-1 and CDDP therapy for HER2-positive advanced gastric cancer. Cancer Chemother Pharmacol 77:957–962

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs 30:1621–1627

    Article  CAS  Google Scholar 

  • Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 9:711

    PubMed  PubMed Central  Google Scholar 

  • Kulhari H, Pooja D, Rompicharla SV, Sistla R, Adams DJ (2015) Biomedical applications of trastuzumab: as a therapeutic agent and a targeting ligand. Med Res Rev 35:849–876

    Article  CAS  PubMed  Google Scholar 

  • Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, Yu L, Qian X, Guo W, Ding Y (2011) Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One 6:e24172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, Yang M, Qian X, Ding Y, Yu L (2013) Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One 8:e69643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Liang S, Zhang C, Liu Y, Yang M, Zhang J, Zhi X, Pan F, Cui DJB (2015) Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 54:177–187

    Article  CAS  PubMed  Google Scholar 

  • Li Y-F, Zhang H-T, Xin L (2018) Hyaluronic acid-modified polyamidoamine dendrimer g5-entrapped gold nanoparticles delivering metase gene inhibits gastric tumor growth via targeting cd44+ gastric cancer cells. J Cancer Res Clin Oncol 144:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Li C, Zhang C, Chen Y, Xu L, Bao C, Wang X (2015) CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics 5:970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W-F, Ji S-R, Sun J-J, Zhang Y, Liu Z-Y, Liang A-B, Zeng H-Z (2012a) CD146 expression correlates with epithelial-mesenchymal transition markers and a poor prognosis in gastric cancer. Int J Mol Sci 13:6399–6406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Wang H, Wang Q, Sun Y, Shen M, Zhu M, Wan Z, Duan Y (2012b) cRGD conjugated mPEG-PLGA-PLL nanoparticles for SGC-7901 gastric cancer cells-targeted delivery of fluorouracil. J Nanosci Nanotechnol 12:4467–4471

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Li X, Chen C, Li C, Zhou C, Zhang W, Zhao J, Fan J, Cheng K, Chen L (2018) Target-specific delivery of oxaliplatin to HER2-positive gastric cancer cells in vivo using oxaliplatin-au-fe3o4-herceptin nanoparticles. Oncol Lett 15:8079–8087

    PubMed  PubMed Central  Google Scholar 

  • Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19:17030–17039

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Peng X, Hou J, Wu S, Shen J, Wang L (2017) Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomedicine 12:5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkin CA, Meade TJ, Petrosko SH, Stegh AH (2015) Nanotechnology-based precision tools for the detection and treatment of cancer. Springer, Cham

    Book  Google Scholar 

  • Muthu MS, Leong DT, Mei L, Feng S-S (2014) Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie J, Wang Y, Wang W (2016) In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy. Int J Pharm 509:168–177

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Sun L-C, Tao Y-F, Zhou Z, Du X-L, Peng L, Feng X, Wang J, Li Y-P, Liu L (2011) ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med 9:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Liu J, Yang G, Li Y (2018) Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: quantum dot-based identification of biomarkers in cancer stromal cells. Int J Nanomedicine 13:161

    Article  CAS  PubMed  Google Scholar 

  • Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad Gastroenterologiczny 14:26

    CAS  PubMed  Google Scholar 

  • Ruan J, Song H, Qian Q, Li C, Wang K, Bao C, Cui D (2012) HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 33:7093–7102

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Liang X, Wang Y, Han H, Yang J, Fang X, Li Q (2019) Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer. Biomater Sci 7:1632–1642

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Song X, Li X, Su T, Qi S, Qiao R, Wang F, Huan Y, Yang W, Wang J (2014) In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale 6:14343–14353

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, Narabayashi I (2006) Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer 9:120–128

    Article  PubMed  Google Scholar 

  • Thamphiwatana S, Fu V, Zhu J, Lu D, Gao W, Zhang L (2013) Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery. Langmuir 29:12228–12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi S, Jin T (2018) Recombinant protein (luciferase-IgG binding domain) conjugated quantum dots for BRET-coupled near-infrared imaging of epidermal growth factor receptors. Bioconjug Chem 29:1466–1474

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Horiguchi H, Hiraki S, Ono S, Miyazaki H, Saito D (2014) Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer. Cancer Sci 105:1626–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraj Kumar P, Venkata Subrahmanya Lokesh B (2014) Designing and in-vitro characterization of micelle forming amphiphilic PEGylated rapamycin nanocarriers for the treatment of gastric cancer. Curr Drug Deliv 11:613–620

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Li Z (2013) Nanoparticle-based tumor theranostics with molecular imaging. Curr Pharm Biotechnol 14:683–692

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang C, Shen G, Liu H, Fu H, Cui D (2014a) Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J Nanobiotechnol 12:58

    Article  CAS  Google Scholar 

  • Wang C, Bao C, Liang S, Zhang L, Fu H, Wang Y, Wang K, Li C, Deng M, Liao Q (2014b) HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer. Nanoscale Res Lett 9:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu P, Sun Y, Wu H, Li X, Duan Y, Zhang Z (2014c) Pluronic-poly [α-(4-aminobutyl)-l-glycolic acid] polymeric micelle-like nanoparticles as carrier for drug delivery. J Nanosci Nanotechnol 14:4843–4850

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, Yang S, Bian X, Fang D (2015) Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine 10:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G, Ba Y (2018) Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 26:774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, Teesalu T, Safinya CR (2018) Competition of charge-mediated and specific binding by peptide-tagged cationic liposome–DNA nanoparticles in vitro and in vivo. Biomaterials 166:52–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Xu X, Tang Q, Li Y (2012) A new type of silica-coated Gd(2)(CO(3))(3):Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging. Nanotechnology 23:205103

    Article  CAS  PubMed  Google Scholar 

  • Wu F-l, Li R-T, Yang M, Yue G-F, Wang H-y, Liu Q, Cui F-b, Wu P-y, Ding H, Yu L-X (2015) Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett 363:7–16

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Cao J-Q, Liu C, Zeng F, Cheng H, Hu X-Y, Shao J-H (2015) Evaluation of rMETase-loaded stealth PLGA/liposomes modified with anti-CAGE scFV for treatment of gastric carcinoma. J Biomed Nanotechnol 11:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Xin J, Wang S, Wang B, Wang J, Wang J, Zhang L, Xin B, Shen L, Zhang Z, Yao C (2018) AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers. Int J Nanomedicine 13:2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Cui F, Huang D, Zhang D, Zhu A, Sun X, Cao Y, Ding S, Wang Y, Gao E (2019) PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int J Nanomedicine 14:17

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Hyodo I, Koga Y, Tsumura R, Sato R, Obonai T, Fuchigami H, Furuya F, Yasunaga M, Harada M (2015) Enhanced antitumor effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models. Cancer Sci 106:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Zheng Z, Zheng L, Qin J, Li H, Xue X, Gao J, Fang G (2018a) siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells. OncoTargets Ther 11:6811

    Article  CAS  Google Scholar 

  • Yang F, Li A, Liu H, Zhang H (2018b) Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des Devel Ther 12:3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye W, Chow W-H, Lagergren J, Yin L, Nyrén O (2001) Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 121:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Sato M, Yamamoto Y, Maehara T, Naohara T, Aono H, Sugishita H, Sato K, Watanabe Y (2012) Tumor local chemohyperthermia using docetaxel-embedded magnetoliposomes: interaction of chemotherapy and hyperthermia. J Gastroenterol Hepatol 27:406–411

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Pan L, Gao G, Fu H, Fu S, Song H (2013) Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol 11:17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganji Seeta Rama Raju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dariya, B., Pavitra, E., Momin, S., Raju, G.S.R. (2020). Nanotechnology Applications in Gastric Cancer. In: Raju, G., Bhaskar, L. (eds) Theranostics Approaches to Gastric and Colon Cancer. Diagnostics and Therapeutic Advances in GI Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-15-2017-4_13

Download citation

Publish with us

Policies and ethics