Skip to main content

Role of c-Met/HGF Axis in Altered Cancer Metabolism

  • Chapter
  • First Online:
Cancer Cell Metabolism: A Potential Target for Cancer Therapy

Abstract

c-Met (mesenchymal–epithelial transition factor) is a receptor tyrosine kinase that belongs to the Met family and is majorly expressed on the surfaces of epithelial cells. Hepatocyte growth factor (HGF) is the receptor specific to c-Met. HGF binding to c-Met leads to the initiation of series of cascade mediating wound healing and embryogenesis. However, in cancer cells, mutation in c-Met stimulates various downstream signalling pathways such as PI3K/AKT, Ras/MAPK, and JAK/STAT, causing aberrant c-Met/HGF axis activation and resulting in development and progression through migration, invasion, and metabolic reprogramming in cancer. c-Met/HGF axis modulates glucose metabolism in cancer by altering major enzymes and transporters such as hexokinase, phosphofructokinase, lactate dehydrogenase, and glucose transporters and shifts the reliance of cancer cells on glucose rather than oxidative phosphorylation even in the presence of oxygen (Warburg phenomena). In addition, c-Met/HGF axis modulates and interferes with other pathways such as pentose phosphate pathway, amino acid metabolism, and TCA cycle leading to its aggressive phenotypes. Therefore, understanding the association between c-Met/HGF axis and signalling pathways is critical and clinically important to develop therapeutic drugs. In this chapter, we discuss the molecular structure of HGF and c-Met and the mechanism through which this axis interacts and activates other signalling pathways involved in metabolic reprogramming of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 13 March 2020

    The following late corrections have been carried out in the updated version of chapters 6 and 7:

References

  • Anglesio MS et al (2011) IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res 17(8):2538–2548

    Article  CAS  PubMed  Google Scholar 

  • Bender S et al (2016) Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 22(11):1314–1320

    Article  CAS  Google Scholar 

  • Bernier M et al (2011) Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 286(22):19270–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchmeier W, Rosa M (2003) How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 13(6):328–335

    Article  PubMed  CAS  Google Scholar 

  • Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19(21):2474–2488

    Article  CAS  PubMed  Google Scholar 

  • Bromberg J (2002) JAK-STAT signaling in human disease Stat proteins and oncogenesis. J Clin Invest 109(9):1139–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868

    Article  CAS  PubMed  Google Scholar 

  • Caenepeel S et al (2017) MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor. Oncotarget 8(11):17795–17809

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Dodhia S, Su GH (2017) Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget 8(13):22203–22217

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Cheng N et al (2009) TGF-β signaling deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res 6(10):1521–1533

    Article  CAS  Google Scholar 

  • Cho KH et al (2014) A ROS/STAT3/HIF-1 a signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. Prostate 74(5):528–536

    Article  CAS  PubMed  Google Scholar 

  • Coppock JD et al (2013) Improved clearance during treatment of HPV-positive head and neck cancer. Neoplasia 15(6):620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer A et al (2005) Activation of the c-Met receptor complex in fibroblasts drives invasive cell behavior by signaling through transcription factor STAT3. J Cell Biochem 816:805–816

    Article  CAS  Google Scholar 

  • Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Denicola GM et al (2012) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109

    Article  CAS  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    Article  CAS  PubMed  Google Scholar 

  • Duvel K et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferracinis R, Longati P, Naldini L, Vigna E (1991) Identification of the major autophosphorylation site of the Met/hepatocyte growth factor receptor tyrosine kinase. J Biochem 266(29):19558–19564

    Google Scholar 

  • Fu Y-t et al (2017) Valproic acid, targets papillary thyroid cancer through inhibition of c-Met signalling pathway. Am J Transl Res 9(6):3138–3147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(6):24–43

    Article  CAS  Google Scholar 

  • Giorgi C et al (2010) STAT3 – mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY) 2(1):823–842

    Google Scholar 

  • Goetze K et al (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39(2):453–463

    CAS  PubMed  Google Scholar 

  • Guo T et al (2010) Quantitative proteomics discloses MET expression in mitochondria as a direct target of MET kinase inhibitor in cancer cells. Mol Cell Proteomics 9(12):2629–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamanaka RB, Chandel NS (2012) Targeting glucose metabolism for cancer therapy: figure 1. J Exp Med 209(2):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann S, Bhola NE, Grandis JR (2016) HGF/Met signaling in head and neck cancer: impact on the tumor microenvironment. Clin Cancer Res 22(16):4005–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hass R, Jennek S, Yang Y, Friedrich K (2017) c-Met expression and activity in urogenital cancers – novel aspects of signal transduction and medical implications. Cell Commun Signal 15(1):1–9

    Article  CAS  Google Scholar 

  • Hein O et al (2009) The Warburg effect returns to the cancer stage. Semin Cancer Biol 19(1):1–3

    Article  Google Scholar 

  • Hensley CT, Wasti AT, Deberardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123(9):3678–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes PE et al (2016) In vitro and in vivo activity of AMG 337, a potent and selective MET kinase inhibitor in MET-dependent cancer models. Mol Cancer Ther 15(7):1568–1580

    Article  CAS  PubMed  Google Scholar 

  • Hung W, Elliott B (2001) Co-operative effect of c-Src tyrosine kinase and Stat3 in activation of hepatocyte growth factor expression in mammary carcinoma cells. J Biol Chem 276(15):12395–12403

    Article  CAS  PubMed  Google Scholar 

  • Imura Y et al (2016) Functional and therapeutic relevance of hepatocyte growth factor/c-Met signaling in synovial sarcoma. Cancer Sci 107(12):1867–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H et al (2006) Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab 3(4):267–275

    Article  CAS  PubMed  Google Scholar 

  • Kawada K, Toda K, Sakai Y (2017) Targeting metabolic reprogramming in KRAS - driven cancers. Int J Clin Oncol 22(4):651–659

    Article  CAS  PubMed  Google Scholar 

  • Kim B et al (2016) Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-Met signaling. Phytother Res 30(11):1833–1840

    Article  CAS  PubMed  Google Scholar 

  • Kimmelman AC (2016) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21(8):1828–1834

    Article  CAS  Google Scholar 

  • Krupar R et al (2014) Immunologic and metabolic characteristics of HPV-negative and HPV-positive head and neck squamous cell carcinomas are strikingly different. Virchows Arch 465(3):299–312

    Article  CAS  PubMed  Google Scholar 

  • Kuang W et al (2017) Hepatocyte growth factor induces breast cancer cell invasion via the PI3K/Akt and P38 MAPK signaling pathways to up-regulate the expression of COX2. Am J Transl Res 9(8):3816–3826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar et al (2015) Mitigation of tumor-associated fibroblast-facilitated head and neck cancer progression with anti–hepatocyte growth factor antibody Ficlatuzumab. JAMA Otolaryngol Head Neck Surg 141(12):1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D (2017) Regulation of glycolysis in head and neck squamous cell carcinoma. Postdoc J 5(1):14–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar et al (2018) Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res 78(14):3769–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung E et al (2016) Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/c-Met signaling pathway. Oncogene 36(19):2680–2692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Liu J, Liu T, Yang X (2017) Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol Lett 14(2):2254–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebmann C (2001) Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell Signal 13:777–785

    Article  CAS  PubMed  Google Scholar 

  • Lien EC, Lyssiotis CA, Cantley LC (2016) Metabolic reprogramming by the PI3K-Akt-MTOR pathway in cancer. Recent Results Cancer Res 207:39–72

    Article  CAS  PubMed  Google Scholar 

  • Lui et al (2011) Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene 30(9):1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Luo X-m et al (2015) Co-inhibition of GLUT-1 expression and the PI3K/Akt signaling pathway to enhance the radiosensitivity of laryngeal carcinoma xenografts in vivo. PLoS One 10(11):1–15

    Google Scholar 

  • Lyssiotis CA, Son J, Cantley LC, Kimmelman AC (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12(13):1987–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini et al (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

    Article  CAS  PubMed  Google Scholar 

  • Meijer TWH, Kaanders JHAM, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18(20):5585–5595

    Article  CAS  PubMed  Google Scholar 

  • Mossenta et al (2019) New insight into therapies targeting angiogenesis in hepatocellular carcinoma. Cancers 11(8):1086

    Article  PubMed Central  CAS  Google Scholar 

  • Noch E, Khalili K (2012) Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol Cancer Ther 11(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliaková M, Aebersold DM, Zimmer Y, Medová M (2018) The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer 17(1):1–12

    Article  CAS  Google Scholar 

  • Qamsari ES et al (2017) The c-Met receptor: implication for targeted therapies in colorectal cancer. Tumor Biol 39(5):1–13

    Google Scholar 

  • Rucki AA et al (2018) Role of AnnexinA2, Sema3D and PlexinD1 in mediating perineural invasion as a mechanism of metastasis in pancreatic ductal adenocarcinoma. Cancer Res 16(11):2399–2409

    Google Scholar 

  • Salgia R (2017) MET in lung cancer: biomarker selection based on scientific rationale. Mol Cancer Ther 16(4):555–566

    Article  CAS  PubMed  Google Scholar 

  • Sandulache VC, Myers JN (2012) Altered metabolism in head and neck squamous cell carcinoma: an opportunity for identification of novel biomarkers and drug targets. Head Neck 34(2):282–290

    Article  PubMed  Google Scholar 

  • Semenza GL (2011) HIF-1 – upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):1–10

    Google Scholar 

  • Shaw RJ, Cantley LC (2006) Ras, PI(3)K and MTOR signalling controls tumour cell growth. Nature 441(7092):424–430

    Article  CAS  PubMed  Google Scholar 

  • Simons AL et al (2011) The role of Akt pathway signaling in glucose metabolism and metabolic oxidative stress. In: Oxidative stress in cancer biology and therapy. Humana Press, Totowa, NJ, pp 21–46

    Google Scholar 

  • Son J et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamagnone L et al (2019) Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391(6664):285–288

    Google Scholar 

  • Tang Z et al (2008) Dual MET – EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer 99(6):911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden M, Cantley L, Thompson C (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhaesebroeck B, Guibert JG, Graupera M (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev 11(5):329–341

    Article  CAS  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev 2(7):489–501

    Article  CAS  Google Scholar 

  • Wang M et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JG (2000) STAT signalling in cell proliferation and in development. Curr Opin Genet Dev 10(5):503–507

    Article  CAS  PubMed  Google Scholar 

  • Wojcik EJ et al (2006) A novel activating function of C-Src and Stat3 on HGF transcription in mammary carcinoma cells. Oncogene 25(19):2773–2784

    Article  CAS  PubMed  Google Scholar 

  • Wu J-c, Wang C-t, Hung H-c, Wu W-j (2016) Heteronemin is a novel c-Met/STAT3 inhibitor against advanced prostate cancer cells. Prostate 76(16):1469–1483

    Article  CAS  PubMed  Google Scholar 

  • Xu Q et al (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24(36):5552–5560

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Jiao X, Zou H, Li K (2015) Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol 10(62):1–10

    Google Scholar 

  • Yan S-x et al (2013) Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci 10(10):1375–1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin B et al (2017) RON and c-Met facilitate metastasis through the ERK signaling pathway in prostate cancer cells. Oncol Rep 37(6):3209–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying H et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev 7(1):41–51

    CAS  Google Scholar 

  • Yun J et al (2010) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559

    Article  CAS  Google Scholar 

  • Zhang Y et al (2018) Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 17(1):1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng JIE (2012) Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett 4(6):1151–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X et al (2018) Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose. BMC Cancer 18(1):559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu L et al (2016) Acid sphingomyelinase/ASM is required for cell surface presentation of Met receptor tyrosine kinase in cancer cells. J Cell Sci 129(22):4238–4251

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely thank all authors for their valuable inputs and carefully reading the manuscript.

Conflicts of interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandel, V., Raj, S., Choudhari, R., Kumar, D. (2020). Role of c-Met/HGF Axis in Altered Cancer Metabolism. In: Kumar, D. (eds) Cancer Cell Metabolism: A Potential Target for Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-1991-8_7

Download citation

Publish with us

Policies and ethics