Skip to main content

Microbial Lipases and Their Versatile Applications

  • Chapter
  • First Online:
Microbial Enzymes: Roles and Applications in Industries

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 11))

Abstract

Lipases are important biocatalysts and known for their versatile biotechnological applications. Lipases are well known as triacylglycerol hydrolases converting fats into simpler compounds as glycerol and fatty acids at the water-lipid interface and vice versa in nonaqueous medium. Amongst, microorganisms mainly bacteria, fungi, and yeasts are the sources of lipase. Important lipase-producing bacterial genera are Bacillus, Pseudomonas, Botryococcus, and Burkholderia. Microbial lipases have received much attention due to their high substrate specificity, lesser processing time, low energy need, high stability, and inexpensive industrial production by using easily available raw materials. The high stability of lipases has extended their application to different industries, and they are taking the lead in the industrial synthesis of oleochemicals, surfactants, drugs, and bioactive compounds. Microbial lipases have wide commercial applicability and are used for the manufacture of several products like oil, food, soaps and detergents, cosmetics, paper, leather, fabrics, and biodiesel. In the fat and oil industries various trans-esterification and inter-esterification chemical reactions are catalyzed for the alteration of fats/oils in the production of nutritionally important triacylglycerols and polyunsaturated fatty acids (PUFA), substitutes for cocoa butter, fatty acid-enriched oils, etc. At the global level, vigorous research for finding novel microbial lipases with industrial value is being carried out. This chapter emphasizes the microbial synthesis of lipases and applications in varying sectors of industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla R, Ravindra P (2013) Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenergy 56:8–13

    Article  CAS  Google Scholar 

  • Aboualizadeh F, Kaur J, Behzad-Behbahani A, Khalvati B (2011) Induction of mutation in Bacillus subtilis lipase gene using error-prone PCR. Jundishapur J Microbiol 4:153–158

    Google Scholar 

  • Adamczak M, Bednarski W (2004) Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles. Process Biochem 39:1347–1361

    Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Google Scholar 

  • Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101:3628–3634

    Article  CAS  PubMed  Google Scholar 

  • Anon (1983) Enzymes in consumer products technology. Chem Eng Technol 55:589–590

    Google Scholar 

  • Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490

    Article  CAS  PubMed  Google Scholar 

  • Arora NK, Panosyan H (2019) Extremophiles: applications and roles in environmental sustainability. Environ Sustain 2(3):217–218

    Article  Google Scholar 

  • Ashfaq M (2015) Basmati rice a class apart (a review). J Rice Res 3:88–95

    Google Scholar 

  • Bailey JE, Ollis DF (1986) Applied enzyme catalysis. In: Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York, NY, pp 157–227

    Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2014) Deinking with enzymes. In: Bajpai P (ed) Recycling and deinking of recovered paper. Elsevier, Amsterdam, pp 139–153

    Google Scholar 

  • Balaji V, Ebenezer P (2008) Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation. Indian J Sci Technol 1:1–8

    Google Scholar 

  • Baumann H, Bühler M, Fochem H, Hirsinger F, Zoebelein H, Falbe J (1988) Natural fats and oils—renewable raw materials for the chemical industry. Angew Chem Int Ed Engl 27:41–62

    Article  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) RETRACTED: a process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil

    Google Scholar 

  • Bhavsar KV, Yadav GD (2019) Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over Candida antarctica lipase as catalyst in solvent-free system. Flavour Fragr J 34:288–293

    Google Scholar 

  • Boonmahome P, Mongkolthanaruk W (2013) Lipase-producing bacterium and its enzyme characterization. J Life Sci Technol 1:196–200

    Google Scholar 

  • Brust B, Lecoufle M, Tuaillon E, Dedieu L, Canaan S, Valverde V, Kremer L (2011) Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS One 6(9):e25078

    Google Scholar 

  • Buchert J, Pere J, Puolakka A, Nousiainen P (2000) Scouring of cotton with pectinases, proteases, and lipases. Text Chemist Colorist Am Dyestuff Rep 32:4852

    Google Scholar 

  • Buisman GJH, van Helteren CTW, Kramer GFH, Veldsink JW, Derksen JTP, Cuperus FP (1998) Enzymatic esterifications of functionalized phenols for the synthesis of lipophilic antioxidants. Biotechnol Lett 20:31–136

    Article  Google Scholar 

  • Cavalcanti EDC, Aguieiras ÉCG, da Silva PR, Duarte JG, Cipolatti EP, Fernandez-Lafuente R, da Silva JAC, Freire DMG (2018) Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel 215:705–713

    Google Scholar 

  • Cheetham PSJ (1995) The applications of enzymes in industry. In: Wiseman A (ed) Handbook of enzyme biotechnology. Ellis Horwood, Chichester, pp 419–522

    Google Scholar 

  • Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S (2011) A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis 10:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher LP, Zambare VP, Zambare A, Kumar H, Malek L (2015) A thermoalkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. J Chem Technol Biotechnol 90:2007–2016

    Article  CAS  Google Scholar 

  • Cong S, Tian K, Zhang X, Lu F, Singh S, Prior B, Wang ZX (2019) Synthesis of flavor esters by a novel lipase from Aspergillus niger in a soybean-solvent system. 3 Biotech 9(6):244

    Google Scholar 

  • Das D, Kalra I, Mani K, Salgaonkar BB, Braganca JM (2019) Characterization of extremely halophilic archaeal isolates from Indian salt pans and their screening for production of hydrolytic enzymes. Environ Sustain 2(3):227–239

    Article  CAS  Google Scholar 

  • David G (2017) Lipases industrial applications: focus on food and agroindustries. OCL 24(4):D403

    Article  Google Scholar 

  • de Meneses AC, Lerin LA, Araújo PHH, Sayer C, de Oliveira D (2019) Benzyl propionate synthesis by fed-batch esterification using commercial immobilized and lyophilized Cal B lipase. Bioprocess Biosyst Eng 42(10):1625–1634

    Article  PubMed  CAS  Google Scholar 

  • Dellamora-ortiz GM, Martins RC, Rocha WL, Dias AP (1997) Activity and stability of a Rhizomucor miehei lipase in hydrophobic media. Biotechnol Appl Biochem 26:31–37

    CAS  PubMed  Google Scholar 

  • Dey A, Chattopadhyay A, Mukhopadhyay S (2014) An approach to the identification and characterisation of a psychrotrophic lipase producing Pseudomonas sp. ADT3 from Arctic Region. Adv Biosci Biotechnol 5:322–332

    Article  CAS  Google Scholar 

  • Dharmsthiti S, Kuhasuntisuk B (1998) Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. J Ind Microbiol Biotechnol 21:75–80

    Article  CAS  Google Scholar 

  • Eddehech A, Zied Z, Aloui F, Smichi N, Noiriel A, Abousalham A, Gargouri Y (2019) Production, purification and biochemical characterization of a thermoactive, alkaline lipase from a newly isolated Serratia sp. W3 Tunisian strain. Int J Biol Macromol 123:792–800

    Article  CAS  PubMed  Google Scholar 

  • Esteban-Torres M, Mancheno JM, de las Rivas B, Munoz R (2015) Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT Food Sci Technol 60:246–252

    Article  CAS  Google Scholar 

  • Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD (2019) Driving immobilized lipases as biocatalysts: 10 years state of the art and future prospects. Ind Eng Chem Res 58(14):5358–5378

    Article  CAS  Google Scholar 

  • Faouzi L, Fatimazahra EB, Moulay S, Adel S, Wifak B, Soumya E, Iraqui M, Saad KI (2015) Higher tolerance of a novel lipase from Aspergillus flavus to the presence of free fatty acids at lipid/water interface. Afr J Biochem Res 9:9–17

    Article  CAS  Google Scholar 

  • Farrokh P, Yakhchali B, Karkhane AA (2014) Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12. Braz J Microbiol 45:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira-Dias S, Sandoval G, Plou F, Valero F (2013) The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electron J Biotechnol 16:1–28

    Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  PubMed  Google Scholar 

  • Fuji T, Tatara T, Minagawa M (1986) Studies on application of lipolytic enzyme in detergent industries. J Am Oil Chem Soc 63:796–799

    Article  Google Scholar 

  • Fukuda S, Hayashi S, Ochiai H, Iiizumi T, Nakamura K (1990) Improvers for deinking of wastepaper. Japanese Patent 2:229–290

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Ganapati DY, Piyush SL (2005) Lipase-catalyzed transesterification of methyl acetoacetate with n-butanol. J Mol Catal B: Enzym 32:107–113

    Article  CAS  Google Scholar 

  • Garlapati VK, Banerjee R (2013) Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification. Enzyme Res 2013:6

    Article  CAS  Google Scholar 

  • Gerhartz W (1990) Industrial uses of enzymes. In: Enzymes in industry production and application. VCH, Weinheim, pp 77–148

    Google Scholar 

  • Ghamgui H, Karra-Chaâbouni M, Gargouri Y (2004) 1-butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme Microb Technol 35(4):355–363

    Google Scholar 

  • Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2011) Comprehensive biotechnology. In: Moo-Young M (ed) Fungal biotechnology in food and feed processing, 2nd edn. Academic Press, Burlington, MA, pp 603–615

    Google Scholar 

  • Godfrey T, Reichelt J (1983) Industrial applications. In: Industrial enzymology—applications of enzymes in industry. The Nature Press, London, pp 170–465

    Google Scholar 

  • Godfrey T, West S (1996) Industrial enzymology. Macmillan Press, London, p 3

    Google Scholar 

  • Gomes FM, Pereira EB, de Castro HF (2004) Immobilization of lipase on chitin and its use in nonconventional biocatalysis. Biomacromolecules 5(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Basu JK, De S (2012) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33:1–16

    Google Scholar 

  • Gotor-Fernández V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812

    Article  CAS  Google Scholar 

  • Grbavčić S, Bezbradica D, Izrael-Zivkovic L, Avramovic N, Milosavic N, Karadzic I, Knezevic-Jugovic Z (2011) Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour Technol 102:11226–11233

    Google Scholar 

  • Guerrand D (2017) Lipases industrial applications: focus on food and agroindustries. OCL 24:D403

    Article  Google Scholar 

  • Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B: Enzym 68:1–21

    Article  CAS  Google Scholar 

  • Guo J, Chen CP, Wang SG, Huang XJ (2015) A convenient test for lipase activity in aqueous-based solutions. Enzyme Microb Technol 71:8–12

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Rathi P, Bradoo S (2003) Lipase mediated upgradation of dietary fats and oils. Crit Rev Food Sci Nutr 43:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez A, del Rı́o JC, Martı́nez MJ, Martı́nez AT (2001) The biotechnological control of pitch in paper pulp manufacturing. Trends Biotechnol 19:340–348

    Article  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  CAS  PubMed  Google Scholar 

  • Hegde K, Chandra N, Sarma SJ, Brar SK, Veeranki VD (2015) Genetic engineering strategies for enhanced biodiesel production. Mol Biotechnol 57:606–624

    Article  CAS  PubMed  Google Scholar 

  • Hillis WE, Sumimoto M (1989) Effect of extractive on pulping. In: Rowe JW (ed) Natural Products of Woody Plants II. Springer, Berlin, pp 880–920

    Chapter  Google Scholar 

  • Holmquist M (1998) Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Chem Phys Lipids 93:57–65

    Google Scholar 

  • Horchani H, Aissa I, Ouertani S, Zarai Z, Gargouri Y, Sayari A (2012) Staphylococcal lipases: biotechnological applications. J Mol Catal B: Enzym 76:125–132

    Article  CAS  Google Scholar 

  • Hsu AF, Jones K, Foglia TA, Marmer WN (2002) Immobilized lipase catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnol Appl Biochem 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Iftikhar T, Niaz M, Ali EA, Jabeen R, Abdullah R (2012) Production process of extracellular lipases by Fusarium sp. using agricultural by products. Pak J Bot 44:335–339

    Google Scholar 

  • Imamura S, Takahashi M, Misaki H, Matsuura K (1989) Method and reagent containing lipases for enzymatic determination of triglycerides. West Germany Patent 3,912,226

    Google Scholar 

  • Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Cat B Enzymat 16:53–58

    Article  CAS  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics and structures. Extremophiles 2:185–190

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15(1):29–63

    Article  CAS  PubMed  Google Scholar 

  • Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Javed S, Azeem F, Hussain S, Rasul I, Siddique MS, Riaz M, Afzal M, Kouser A, Nadeem H (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34

    Article  CAS  PubMed  Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase-A critical review. Crit Rev Biotechnol 28:253–264

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48

    Google Scholar 

  • Kalantzi S, Mamma D, Kalogeris E, Kekos D (2010) Improved properties of cotton fabrics treated with lipase and its combination with pectinase. Fibres Text East Eur 18(5):86–92

    CAS  Google Scholar 

  • Kamini NR, Hemachander C, Geraldine Sandana Mala J, Puvanakrishnan R (1999) Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci 77(1):80–86

    CAS  Google Scholar 

  • Kantouch A, Raslan WM, El-Sayed H (2005) Effect of lipase pretreatment on the dyeability of wool fabric. J Nat Fibers 2(2):35–48

    Article  CAS  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  • Karmee SK, Patria RD, Lin CSK (2015) Techno-economic evaluation of biodiesel production from waste cooking oil-A case study of Hong Kong. Int J Mol Sci 16:4362–4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karra-Châabouni M, Ghamgui H, Bezzine S, Rekik A, Gargouri Y (2006) Production of flavour esters by immobilized Staphylococcus simulans lipase in a solvent-free system. Process Biochem 41(7):1692–1698

    Article  CAS  Google Scholar 

  • Karube I, Sode K (1988) Biosensors for lipids. In: Applewhite TH (ed) Proceedings of the World Conference on Biotechnology in the Fats and Oils industry. Campaign, USA, American Oil Chemists Society, pp 215–218

    Google Scholar 

  • Kazlauskas RJ, Bornscheuer UT (1998) In: Rehm HJ, Reed G, Pühler A, Stadler PJW, Kelly DR (eds) Biotechnology: biotransformations with lipases, vol 8. VCH, Weinheim, pp 37–191

    Google Scholar 

  • Kim H, Kim T, Choi N, Kim BH, Oh SW, Kim IH (2019) Synthesis of diethylhexyl adipate by Candida antarctica lipase-catalyzed esterification. Process Biochem 78:58–62

    Google Scholar 

  • Kim HR, Song WS (2006) Lipase treatment of polyester fabrics. Fibers Polymers 7(4):339–343

    Article  CAS  Google Scholar 

  • Kim H-R, Song W-S (2008) Effects of triton X-100 and calcium chloride on the porcine pancreas lipase treatment of PET fabrics. J Korean Soc Cloth Text 32:911–917

    Article  Google Scholar 

  • Köse Ö, Tüter M, Aksoy HA (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83(2):125–129

    Google Scholar 

  • Kynclova E, Hartig A, Schalkhammer T (1995) Oligonucleotide labelled lipase as a new sensitive hybridization probe and its use in bio-assays and biosensors. J Mol Recognit 8:139–145

    Article  CAS  PubMed  Google Scholar 

  • Lange NK (1997) Lipase-assisted desizing of woven cotton fabrics. Text Chemist Colorists 29(6):23–26

    CAS  Google Scholar 

  • Lee LP, Karbul HM, Citartan M, Gopinath SCB, Lakshmipriya T, Tang TH (2015) Lipase secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. Biomed Res Int 2015:1–9

    Google Scholar 

  • Li XL, Zhang WH, Wang WD, Dai YJ, Zhang HT, Wang Y, Wang HK, Lu FP (2014) A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. J Mol Catal B Enzym 102:16–24

    Google Scholar 

  • Li N, Li DD, Zhang YZ, Yuan YZ, Geng H, Xiong L, Liu DL (2016) Genome sequencing and systems biology analysis of a lipase-producing bacterial strain. Genet Mol Res 15:1–12

    Google Scholar 

  • Linko YY, Lamsa M, Wu X, Uosukainen E, Seppala J, Linko P (1998) Biodegradable products by lipase biocatalysis. J Biotechnol 66(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen D, Yan Y, Peng C, Xu L (2011) Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 102:10414–10418

    Article  CAS  PubMed  Google Scholar 

  • Lotti M, Pleiss J, Valero F, Ferrer P (2015) Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J 10:22–30

    Article  CAS  PubMed  Google Scholar 

  • Macedo GA, Lozano MMS, Pastore GM (2003) Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. J Biotechnol 6:72–75

    Google Scholar 

  • Martinelle M, Hult K (1995) Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B. Biochim Biophys Acta 1251:191–197

    Google Scholar 

  • Marzuki NHC, Mahat NA, Huyop F, Aboul-Enein HY, Wahab RA (2015) Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod Process 96:211–220

    Google Scholar 

  • Masse L, Kennedy KJ, Chou SP (2001) The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particles in slaughterhouse wastewater. J Chem Technol Biotechnol 76:629–635

    Article  CAS  Google Scholar 

  • Mata TM, Correia D, Pinto A, Andrade S, Trovisco I, Matos E, Caetano NS (2017) Fish oil acidity reduction by enzymatic esterification. Energy Procedia 136:474–480

    Article  CAS  Google Scholar 

  • Matsumoto T, Takahashi S, Kaieda M, Ueda M, Tanaka A, Fukuda H, Kondo A (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520

    Google Scholar 

  • Maugard T, Rejasse B, Legoy MD (2002) Synthesis of water-soluble retinol derivatives by enzymatic method. Biotechnol Prog 18:424–428

    Article  CAS  PubMed  Google Scholar 

  • McNeill GP, Ackman RG, Moore SR (1996) Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids. J Am Oil Chem Soc 73(11):1403–1407

    Article  CAS  Google Scholar 

  • Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi M (2017) Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy 101:593–602

    Google Scholar 

  • Minoguchi M, Muneyuki T (1989) Immobilization of lipase on polyacrylamide and its use in detergents. Japanese Patent 1:285,188

    Google Scholar 

  • Morais Júnior WG, Fernández-Lorente G, Guisán JM, Ribeiro EJ, De Resende MM, Costa Pessela B (2017) Production of omega-3 polyunsaturated fatty acids through hydrolysis of fish oil by Candida rugosa lipase immobilized and stabilized on different supports. Biocatal Biotransformation 35:63–73

    Google Scholar 

  • Musa H, Hafiz Kasim F, Nagoor Gunny AA, Gopinath SCB, Azmier Ahmad M (2019) Enhanced halophilic lipase secretion by Marinobacter litoralis SW-45 and its potential fatty acid esters release. J Basic Microbiol 59(1):87–100

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaran N, Dhar SC (1982) Comparative studies on the degreasing of skins using acid lipase and solvent with reference to the quality of finished leathers. Leather Sci 29:417–424

    CAS  Google Scholar 

  • Nagarajan S (2012) New tools for exploring old friends-microbial lipases. Appl Biochem Biotechnol 168:1163–1196

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Snape J, Khare SK (2000) Method in non-aqueous enzymology. In: Gupta MN (ed) Biochemistry. Birkhauser Verlag, Basel, Switzerland, pp 52–69

    Google Scholar 

  • Nerurkar M, Joshi M, Adivarekar R (2015) Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis. Appl Biochem Biotechnol 175:253–265

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar M, Joshi M, Pariti S, Adivarekar R (2013) Application of lipase from marine bacteria Bacillus sonorensis as an additive in detergent formulation. J Surfact Deterg 16:435–443

    Article  CAS  Google Scholar 

  • Nishioka M, Joko K, Takama M (1990) Lipase manufacture with Candida for use in detergents. Japanese Patent 292,281

    Google Scholar 

  • Niyonzima FN, More SS (2015) Coproduction of detergent compatible bacterial enzymes and stain removal evaluation. J Basic Microbiol 55:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Noh HJ, Lee SY, Jang YS (2019) Microbial production of butyl butyrate, a flavor and fragrance compound. Appl Microbiol Biotechnol 103:2079

    Article  CAS  PubMed  Google Scholar 

  • Nunes P, Martins AB, Santa Brigida AI, Miguez Da Rocha Leao MH, Amaral P (2014) Intracellular lipase production by Yarrowia lipolytica using different carbon sources. Chem Eng Trans 38:421–426

    Google Scholar 

  • Okada T, Morrissey MT (2008) Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase. J Food Sci 73(3):C146–C150

    Article  CAS  PubMed  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Sussman JL (1992) The α/β hydrolase fold. Protein Eng Des Sel 5(3):197–211

    Article  CAS  Google Scholar 

  • Otto RT, Scheib H, Bornscheuer UT, Pleiss J, Syldatk C, Schmid RD (2000) Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids. J Mol Catal B: Enzym 8(4):201–211

    Google Scholar 

  • Pabai F, Kermasha S, Morin A (1995) Lipase from Pseudomonas fragi CRDA 323: partial purification, characterization and interesterification of butter fat. Appl Microbiol Biotechnol 43:42–51

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  PubMed  Google Scholar 

  • Parmar N, Singh A, Ward OP (2001) Enzyme treatment to reduce solids and improve settling of sewage sludge. J Ind Microbiol Biotechnol 26:383–386

    Article  CAS  PubMed  Google Scholar 

  • Parra LP, Espina G, Devia J, Salazar O, Andrews B, Asenjo JA (2015) Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity. Enzyme Microb Technol 68:56–61

    Article  CAS  PubMed  Google Scholar 

  • Pliego J, Mateos JC, Rodriguez J, Valero F, Baeza M, Femat R, Camacho R, Sandoval G, Herrera-Lopez EJ (2015) Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors Switz 15:2798–2811

    Article  CAS  Google Scholar 

  • Pöhnlein M, Slomka C, Kukharenko O, Gärtner T, Wiemann LO, Sieber V, Syldatk C, Hausmann R (2014) Enzymatic synthesis of amino sugar fatty acid esters. Eur J Lipid Sci Technol 116:423–428

    Article  CAS  Google Scholar 

  • Priji P, Unni KN, Sajith S, Binod P, Benjamin S (2015) Production, optimization and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat. Biotechnol Appl Biochem 62:71–78

    Article  CAS  PubMed  Google Scholar 

  • Rajendran A, Palanisamy A, Thangavelu V (2009) Lipase catalyzed ester synthesis for food processing industries. Braz Arch Biol Technol 52:207–219

    Article  CAS  Google Scholar 

  • Ramakrishnan V, Goveas LC, Suralikerimath N, Jampani C, Halami PM, Narayan B (2016) Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatal Agric Biotechnol 6:19–27

    Google Scholar 

  • Ramos-Sanchez LB, Cujilema-Quitio MC, Julian-Ricardo MC, Cordova J, Fickers P (2015) Fungal lipase production by solid-state fermentation. J Bioprocess Biotech 5:203

    Article  CAS  Google Scholar 

  • Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37(2):187–192

    Google Scholar 

  • Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56:16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A (2012) Application of lipase in industry. Asian J Pharm Technol 2:33–37

    Google Scholar 

  • Reddy JR, Rao BV, Karuna MS, Raju KV, Krishna AV, Prasad RB (2013) Lipase-mediated preparation of epoxy lecithin and its evaluation as plasticizer in polyester laminates. J Appl Polym Sci 127:2945–2951

    Article  CAS  Google Scholar 

  • Ribeiro BD, Castro AM, Coelho MAZ, Freire DMG (2011) Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res 2011:1–16

    Google Scholar 

  • Robles-Medina A, Gonzalez-Moreno PA, Esteban-Cerdan L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de Romo AC, Borgstein J (1999) Claude Bernard and pancreatic function revisited after 150 years. Vesalius 5(1):18–24

    CAS  PubMed  Google Scholar 

  • Rowe HD (2001) Biotechnology in the textile/clothing industry: a review. J Consumer Stud Home Econ 23:53–61

    Article  Google Scholar 

  • Rubin B, Dennis EA (1997) Lipases: part A biotechnology methods in enzymology, vol 284. Academic Press, New York, pp 1–408

    Google Scholar 

  • SÁ AGA, de Meneses AC, Araújo PH, de Oliveira D (2017) A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol 69:95–105

    Article  CAS  Google Scholar 

  • Sanchez S, Demain AL (2017) Useful microbial enzymes – an introduction. Biotechnology of microbial enzymes. Elsevier, Amsterdam, pp 1–11

    Book  Google Scholar 

  • Sandoval G, Herrera-López EJ (2018) Lipase, phospholipase, and esterase biosensors (review). In: Sandoval G (ed) Lipases and phospholipases. Methods in molecular biology, vol 1835. Humana Press, New York, NY

    Chapter  Google Scholar 

  • Sangeetha R (2011) Bacterial lipases as potential industrial biocatalysts: an overview. Res J Microbiol 6:1–24

    Article  CAS  Google Scholar 

  • Saphir J (1967) Permanent hair waving. West Germany Patent 1,242,794

    Google Scholar 

  • Satsuki T, Watanabe T (1990) Application of lipase to laundry detergents. Bio Ind 7:501–507

    CAS  Google Scholar 

  • Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18

    Article  CAS  PubMed  Google Scholar 

  • Seitz EW (1974) Industrial applications of microbial lipases-a review. J Am Oil Chem Soc 51:12–16

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase catalysed transesterification of Jatropha oil. Energy Fuel 18:154–159

    Article  CAS  Google Scholar 

  • Shaikh MA (2010) Enzymes: a revaluation in textile processing. Pak Text J:48–51

    Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Baba T, Ooguri T, Moriyama S, Terai T, Tominaga Y (2001) Ethyl esterification of docosahexaenoic acid in an organic solvent-free system with immobilized Candida antarctica lipase. J Biosci Bioeng 92:19–23

    Google Scholar 

  • Silva JA, Macedo GP, Rodrigues DS, Giordano RLC, Gonçalves LRB (2012) Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem Eng J 60:16–24

    Google Scholar 

  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166(2):486–520

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Felse AP, Nunez A, Foglia TA, Gross RA (2003) Regioselective enzyme-catalyzed synthesis of sophorolipid esters, amides, and multifunctional monomers. J Org Chem 68:5466–5477

    Article  CAS  PubMed  Google Scholar 

  • Sirisha E, Rajasekar N, Narasu ML (2010) Isolation and optimization of lipase producing bacteria from oil contaminated soils. Advan Biol Res 4:249–252

    CAS  Google Scholar 

  • Sivaramakrishnan R, Incharoensakdi A (2016) Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. J Biosci Bioeng 121:517–522

    Article  CAS  PubMed  Google Scholar 

  • Snellman EA, Sullivan E, Colwell RR (2002) Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. FEBS J 269:5771–5779

    CAS  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133

    Article  CAS  Google Scholar 

  • Starodub NF (2006) Biosensors for the evaluation of lipase activity. J Mol Catal B: Enzym 40(3):155–160

    Article  CAS  Google Scholar 

  • Stinson SC (1995) Fine and intermediate chemical markers emphasize new products and process. Chem Eng News 73:10–26

    Article  Google Scholar 

  • Su F, Peng C, Li G-L, Xu L, Yan Y-J (2016) Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid. Renew Energy 90:329–335

    Google Scholar 

  • Takamoto T, Shirasaka H, Uyama H, Kobayashi S (2001) Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem Lett 6:492–493

    Article  Google Scholar 

  • Tan T, Zhang M, Wang B, Ying C, Deng I (2003) Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem 39:459–465

    Google Scholar 

  • Thompson G, Swain J, Kay M, Forster CF (2001) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77(3):275–286

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Baigorí MD, Swathy S, Pandey A, Castro GR (2009) Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res Int 42(4):454–460

    Google Scholar 

  • Trojanowicz M (2014) Enantioselective electrochemical sensors and biosensors: a mini-review. Electrochem Comm 8:47–52

    Article  CAS  Google Scholar 

  • Tschocke C (1990) Enzymatic treatment of fats in wastewater treatment plants. Eau Ind Nuisances 138:63–64

    CAS  Google Scholar 

  • Ulker S, Ozel A, Çolak A, Karaoglu SA (2011) Isolation, production, and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turk J Biol 35:543–550

    CAS  Google Scholar 

  • Ullah N, Daud M, Shabir M, Ozkan T, Qasim M (2015) Screening identification and characterization of lipase producing soil bacteria from upper dir and Mardan Khyber Pakhtunkhwa, Pakistan. Int J Biosci 6:49–55

    Google Scholar 

  • Umehara K, Masago Y, Mukaiyama T, Okumura O (1990) Behaviour of alkaline lipase on detergency. Yukagaku 39:321–326

    CAS  Google Scholar 

  • Undurraga D, Markovits A, Erazo S (2001) Cocoa butter equivalent through enzymic interesterification of palm oil mid fraction. Process Biochem 36:933–939

    Article  CAS  Google Scholar 

  • Unni KN, Priji P, Sajith S, Faisal PA, Benjamin S (2016) Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biol Bratisl 71:378–387

    Article  CAS  Google Scholar 

  • Uttatree S, Winayanuwattikun P, Charoenpanich J (2010) Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Appl Biochem Biotechnol 162:1362–1376

    Article  CAS  PubMed  Google Scholar 

  • Vakhlu J (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9(1)

    Google Scholar 

  • Vasileva-Tonkova E, Galabova D (2003) Hydrolytic enzymes and surfactants of bacterial isolates from lubricant-contaminated wastewater. Z Naturforsch C 58:87–92

    Article  CAS  PubMed  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305

    Article  CAS  PubMed  Google Scholar 

  • Vulfson EN (1994) Industrial applications of lipases. In: Woolley P, Peterson SB (eds) Lipases-their structure, biochemistry and application. Cambridge University Press, Cambridge, pp 271–288

    Google Scholar 

  • Wanyonyi WC, Mulaa FJ (2019) Alkaliphilic enzymes and their application in novel leather processing technology for next-generation tanneries. Adv Biochem Eng Biotechnol. Springer, Berlin, Heidelberg

    Google Scholar 

  • Whiteley CG, Enongene G, Pletschke BI, Rose P, Whittington-Jones K (2003) Co-digestion of primary sewage sludge and industrial wastewater under anaerobic sulphate reducing conditions: enzymatic profiles in a recycling sludge bed reactor. Water Sci Technol 48:29–138

    Article  Google Scholar 

  • Winkler KW, Ulrich K, Stuckmann M (1979) Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao F, Li Z, Pan L (2017) Application of microbial lipase and its research progress. Progress Appl Microbiol:8–14

    Google Scholar 

  • Yang F, Weber TW, Gainer JL, Carta G (1997) Synthesis of lovastatin with immobilized Candida rugosa lipase in organic solvents: effects of reaction conditions on initial rates. Biotechnol Bioeng 56:671–680

    Google Scholar 

  • Yang W, He Y, Xu L, Zhang H, Yan Y (2016) A new extracellular thermo-solvent stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J Mol Catal B: Enzym 126:76–89

    Article  CAS  Google Scholar 

  • Yoo HY, Simkhada JR, Cho SS, Park DH, Kim SW, Seong CN, Yoo JC (2011) A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol 102:6104–6111

    Google Scholar 

  • Yvergnaux F (2017) Lipases: particularly effective biocatalysts for cosmetic active ingredients. OCL 24(4):D408

    Article  Google Scholar 

  • Zehani N, Dzyadevych SV, Kherrat R, Jaffrezic-Renault NJ (2014) Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front Chem 2:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng J, Xu L, Liu Y, Zhang X, Yan Y (2012) Lipase-coated K2SO4 micro-crystals: preparation, characterization, and application in biodiesel production using various oil feedstocks. Bioresour Technol 110:224–231

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chu X, Zhang W, Wu N, Fan Y (2011) A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: gene cloning and characterisation. Appl Microbiol Biotechnol 90:971–998

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author Sonal Dixit is thankful to DSKPDF Cell, Pune, India, and University Grant Commission, New Delhi, India, for the award of the D.S. Kothari Postdoctoral Fellowship (F4-2/2006 (BSR)/BL/15-16/0156).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vishnoi, N., Dixit, S., Mishra, J. (2020). Microbial Lipases and Their Versatile Applications. In: Arora, N., Mishra, J., Mishra, V. (eds) Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-15-1710-5_8

Download citation

Publish with us

Policies and ethics