Skip to main content

An Overview of Non-coding RNAs and Cardiovascular System

  • Chapter
  • First Online:
Non-coding RNAs in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1229))

Abstract

Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carninci P, Kasukawa T, Katayama S, Gough J, Frith M, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  CAS  PubMed  Google Scholar 

  3. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap C, Suzuki M, Kawai J. Antisense transcription in the mammalian transcriptome. Science. 2005;309(5740):1564–6.

    Article  PubMed  Google Scholar 

  4. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9(6):e1003569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays. 2007;29(3):288–99.

    Article  CAS  PubMed  Google Scholar 

  6. Melton C, Reuter JA, Spacek DV, Snyder M. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat Genet. 2015;47(7):710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong C-M, Tsang FH-C, Ng IO-L. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol. 2018;15(3):137.

    Article  CAS  PubMed  Google Scholar 

  8. Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res. 2017;120(2):381–99.

    Article  CAS  PubMed  Google Scholar 

  9. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014;8(5):1365–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160(4):595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;1958:8.

    Google Scholar 

  12. Mirsky A, Ris H. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J Gen Physiol. 1951;34(4):451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas CA Jr. The genetic organization of chromosomes. Annu Rev Genet. 1971;5(1):237–56.

    Article  CAS  PubMed  Google Scholar 

  14. Gall JG. Chromosome structure and the C-value paradox. J Cell Biol. 1981;91(3):3s–14s.

    Article  CAS  PubMed  Google Scholar 

  15. Ohno S. So much ‘junk’ DNA in our genome. In: Evolution of genetic systems, Brookhaven symposia in biology. New York: Gordon and Breach; 1972. p. 366–70.

    Google Scholar 

  16. John B, Miklos GLG. Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol. 1979;58:1–114.

    Article  CAS  PubMed  Google Scholar 

  17. Lewin R. Repeated DNA still in search of a function. Science. 1982;217(4560):621–3.

    Article  CAS  PubMed  Google Scholar 

  18. Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature. 1980;284(5757):604.

    Article  CAS  PubMed  Google Scholar 

  19. Yunis JJ, Yasmineh WG. Heterochromatin, satellite DNA, and cell function. Science. 1971;174(4015):1200–9.

    Article  CAS  PubMed  Google Scholar 

  20. Holmes DS, Mayfield JE, Sander G, Bonner J. Chromosomal RNA: its properties. Science. 1972;177(4043):72–4.

    Article  CAS  PubMed  Google Scholar 

  21. Jarmolowski A, Zagorski J, Li H, Fournier M. Identification of essential elements in U14 RNA of Saccharomyces cerevisiae. EMBO J. 1990;9(13):4503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiss T, Solymosy F. Sequence homologies between a viroid and a small nuclear RNA (snRNA) species of mammalian origin. FEBS Lett. 1982;144(2):318–20.

    Article  CAS  PubMed  Google Scholar 

  23. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306(5705):2242–6.

    Article  CAS  PubMed  Google Scholar 

  24. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992;71(3):515–26.

    Article  CAS  PubMed  Google Scholar 

  27. Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, Willard HF. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71(3):527–42.

    Article  CAS  PubMed  Google Scholar 

  28. Khorshidi A, Dhaliwal P, Yang BB. Noncoding RNAs in tumor angiogenesis. In: The long and short non-coding RNAs in cancer biology. Singapore: Springer; 2016. p. 217–41.

    Chapter  Google Scholar 

  29. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228.

    Article  CAS  PubMed  Google Scholar 

  30. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126.

    Article  CAS  PubMed  Google Scholar 

  31. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509.

    Article  CAS  PubMed  Google Scholar 

  32. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246.

    Article  CAS  PubMed  Google Scholar 

  33. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol. 2015;22(1):5.

    Article  CAS  PubMed  Google Scholar 

  35. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gregory RI, K-p Y, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235.

    Article  CAS  PubMed  Google Scholar 

  37. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300.

    Article  CAS  PubMed  Google Scholar 

  38. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laurent GS, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51.

    Article  CAS  Google Scholar 

  41. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.

    Article  CAS  PubMed  Google Scholar 

  42. Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G, Wahlestedt C. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 2010;11(5):R56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cole SL, Vassar R. Linking vascular disorders and Alzheimer’s disease: potential involvement of BACE1. Neurobiol Aging. 2009;30(10):1535–44.

    Article  CAS  PubMed  Google Scholar 

  44. Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K. Emerging roles and context of circular RNAs. Wiley Interdiscip Rev: RNA. 2017;8(2):e1386.

    Article  CAS  Google Scholar 

  45. Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet. 2016;32(5):309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116(4):751–62.

    Article  CAS  PubMed  Google Scholar 

  47. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–50.

    Article  CAS  PubMed  Google Scholar 

  48. Holdt LM, Teupser D. From genotype to phenotype in human atherosclerosis-recent findings. Curr Opin Lipidol. 2013;24(5):410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498(7455):516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152(3):570–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature. 2011;470(7333):284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoon J-H, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723–30.

    Article  CAS  PubMed  Google Scholar 

  54. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Z, Wang Y. Dawn of the Epi-LncRNAs: new path from Myheart. Circ Res. 2015;116(2):235–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spitale RC, Tsai M-C, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics. 2011;6(5):539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci. 2013;110(51):20693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han P, Li W, Lin C-H, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin C-Y, Lin C-J. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514(7520):102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F. Landscape of transcription in human cells. Nature. 2012;489(7414):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Hoon M, Shin JW, Carninci P. Paradigm shifts in genomics through the FANTOM projects. Mamm Genome. 2015;26(9–10):391–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Milligan MJ, Lipovich L. Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front Genet. 2015;5:476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, Zhou G, Shi RZ, Rowley JD. Over 20% of human transcripts might form sense–antisense pairs. Nucleic Acids Res. 2004;32(16):4812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-DiNardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2):232–46.

    Article  CAS  PubMed  Google Scholar 

  66. Pastori C, Peschansky VJ, Barbouth D, Mehta A, Silva JP, Wahlestedt C. Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome. Hum Genet. 2014;133(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  67. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2):e30733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(suppl_1):R17–29.

    Article  CAS  PubMed  Google Scholar 

  69. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM. Direct RNA sequencing. Nature. 2009;461(7265):814.

    Article  CAS  PubMed  Google Scholar 

  70. Wei Y, Peng S, Wu M, Sachidanandam R, Tu Z, Zhang S, Falce C, Sobie EA, Lebeche D, Zhao Y. Multifaceted roles of miR-1s in repressing the fetal gene program in the heart. Cell Res. 2014;24(3):278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takahashi H, Kato S, Murata M, Carninci P. CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. In: Gene regulatory networks. New York: Springer; 2012. p. 181–200.

    Chapter  Google Scholar 

  72. Z-k Z, Pang C, Yang Y, Duan Q, Zhang J, W-c L. Serum long noncoding RNA urothelial carcinoma-associated 1: a novel biomarker for diagnosis and prognosis of hepatocellular carcinoma. J Int Med Res. 2018;46(1):348–56.

    Article  CAS  Google Scholar 

  73. Gardini A. Global run-on sequencing (GRO-Seq). In: Enhancer RNAs. New York: Springer; 2017. p. 111–20.

    Chapter  Google Scholar 

  74. Shi Y, Shang J. Long noncoding RNA expression profiling using Arraystar LncRNA microarrays. In: Long non-coding RNAs. New York: Springer; 2016. p. 43–61.

    Chapter  Google Scholar 

  75. Chen C, Li Z, Yang Y, Xiang T, Song W, Liu S. Microarray expression profiling of dysregulated long non-coding RNAs in triple-negative breast cancer. Cancer Biol Ther. 2015;16(6):856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu D, Fang C, Li X, Geng Y, Li R, Wu C, Jiang J, Wu C. Predictive analysis of long non-coding RNA expression profiles in diffuse large B-cell lymphoma. Oncotarget. 2017;8(14):23228.

    PubMed  PubMed Central  Google Scholar 

  77. Huang W, Thomas B, Flynn RA, Gavzy SJ, Wu L, Kim SV, Hall JA, Miraldi ER, Ng CP, Rigo F. DDX5 and its associated lncRNA Rmrp modulate T H 17 cell effector functions. Nature. 2015;528(7583):517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kashi K, Henderson L, Bonetti A, Carninci P. Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2016;1859(1):3–15.

    Article  CAS  Google Scholar 

  79. Guil S, Soler M, Portela A, Carrère J, Fonalleras E, Gómez A, Villanueva A, Esteller M. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol. 2012;19(7):664.

    Article  CAS  PubMed  Google Scholar 

  80. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005;308(5725):1149–54.

    Article  CAS  PubMed  Google Scholar 

  83. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Galupa R, Heard E. X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev. 2015;31:57–66.

    Article  CAS  PubMed  Google Scholar 

  85. Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet. 2011;12(8):542.

    Article  CAS  PubMed  Google Scholar 

  86. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X inactivation centre is expressed. Nature. 1991;349:3.

    Google Scholar 

  87. Chu C, Zhang QC, Da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY. Systematic discovery of Xist RNA binding proteins. Cell. 2015;161(2):404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. da Rocha ST, Heard E. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol. 2017;24(3):197.

    Article  PubMed  CAS  Google Scholar 

  89. Shi Y, Downes M, Xie W, Kao H-Y, Ordentlich P, Tsai C-C, Hon M, Evans RM. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 2001;15(9):1140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 2006;25(13):3110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beltran M, Puig I, Peña C, García JM, Álvarez AB, Peña R, Bonilla F, de Herreros AG. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev. 2008;22(6):756–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Szcześniak MW, Makałowska I. lncRNA-RNA interactions across the human transcriptome. PLoS One. 2016;11(3):e0150353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, Laurent GS III, Kenny PJ, Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat Med. 2008;14(7):723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma X, Shao C, Jin Y, Wang H, Meng Y. Long non-coding RNAs: a novel endogenous source for the generation of Dicer-like 1-dependent small RNAs in Arabidopsis thaliana. RNA Biol. 2014;11(4):373–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13(3):313–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721.

    Article  CAS  PubMed  Google Scholar 

  97. Park E, Maquat LE. Staufen-mediated mRNA decay. Wiley Interdiscip Rev: RNA. 2013;4(4):423–35.

    Article  CAS  PubMed  Google Scholar 

  98. Kim YK, Furic L, DesGroseillers L, Maquat LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′ UTRs so as to elicit mRNA decay. Cell. 2005;120(2):195–208.

    Article  CAS  PubMed  Google Scholar 

  99. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493(7431):231.

    Article  CAS  PubMed  Google Scholar 

  100. Ong C-T, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 2011;12(4):283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Papanayotou C, Benhaddou A, Camus A, Perea-Gomez A, Jouneau A, Mezger V, Langa F, Ott S, Sabéran-Djoneidi D, Collignon J. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol. 2014;12(6):e1001890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature. 2013;498(7455):511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature. 2013;494(7438):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeng Y. Principles of micro-RNA production and maturation. Oncogene. 2006;25(46):6156.

    Article  CAS  PubMed  Google Scholar 

  108. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci. 2007;104(45):17719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D, Corcoran MM. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 2009;315(17):2941–52.

    Article  CAS  PubMed  Google Scholar 

  111. Kasar S, Underbayev C, Yuan Y, Hanlon M, Aly S, Khan H, Chang V, Batish M, Gavrilova T, Badiane F. Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia. Oncogene. 2014;33(25):3307.

    Article  CAS  PubMed  Google Scholar 

  112. Morenos L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechinaud F, Elwood N, Saffery R, Wong NC. Hypermethylation and down-regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR-15a/16-1. Mol Cancer. 2014;13(1):123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Slezak-Prochazka I, Kluiver J, de Jong D, Kortman G, Halsema N, Poppema S, Kroesen B-J, van den Berg A. Cellular localization and processing of primary transcripts of exonic microRNAs. PLoS One. 2013;8(9):e76647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 2001;274(1–2):157–67.

    Article  CAS  PubMed  Google Scholar 

  115. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  116. de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Geneviève D, Goldenberg A, Oufadem M. Germline deletion of the miR-17∼ 92 cluster causes skeletal and growth defects in humans. Nat Genet. 2011;43(10):1026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol. 2010;17(10):1169.

    Article  CAS  PubMed  Google Scholar 

  119. Seitz H. Redefining microRNA targets. Curr Biol. 2009;19(10):870–3.

    Article  CAS  PubMed  Google Scholar 

  120. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  122. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W, Xu X. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012;31(47):4898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang L, Guo Z-Y, Zhang R, Xin B, Chen R, Zhao J, Wang T, Wen W-H, Jia L-T, Yao L-B. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 2013;34(8):1773–81.

    Article  CAS  PubMed  Google Scholar 

  124. An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ce RNA network. J Cell Mol Med. 2017;21(1):185–92.

    Article  CAS  PubMed  Google Scholar 

  125. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272.

    Article  CAS  PubMed  Google Scholar 

  127. Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB. The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun. 2014;5:2914.

    Article  PubMed  CAS  Google Scholar 

  128. Yang J, Li T, Gao C, Lv X, Liu K, Song H, Xing Y, Xi T. FOXO1 3′ UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett. 2014;588(17):3218–24.

    Article  CAS  PubMed  Google Scholar 

  129. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, Truong V, Schwenke M, Simons C, Matthaei KI. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res. 2010;39(6):2393–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kallen AN, Zhou X-B, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi J-S, Zhang H. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  131. Imig J, Brunschweiger A, Brümmer A, Guennewig B, Mittal N, Kishore S, Tsikrika P, Gerber AP, Zavolan M, Hall J. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction. Nat Chem Biol. 2015;11(2):107.

    Article  CAS  PubMed  Google Scholar 

  132. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384.

    Article  CAS  PubMed  Google Scholar 

  133. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333.

    Article  CAS  PubMed  Google Scholar 

  135. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256.

    Article  PubMed  CAS  Google Scholar 

  136. Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152(6):1308–23.

    Article  CAS  PubMed  Google Scholar 

  137. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.

    Article  CAS  PubMed  Google Scholar 

  139. Beermann J, Piccoli M-T, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325.

    Article  CAS  PubMed  Google Scholar 

  140. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20(11):1470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ng S-Y, Bogu GK, Soh BS, Stanton LW. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell. 2013;51(3):349–59.

    Article  CAS  PubMed  Google Scholar 

  143. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Altered microRNA expression in human heart disease. Physiol Genomics. 2008;31:367–73.

    Article  CAS  Google Scholar 

  145. Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol. 2015;12(3):135.

    Article  CAS  PubMed  Google Scholar 

  146. Chen J-F, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci. 2008;105(6):2111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD, De Windt LJ. Clinical perspective. Circulation. 2008;118(15):1567–76.

    Article  PubMed  CAS  Google Scholar 

  148. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100(8):1164–73.

    Article  PubMed  CAS  Google Scholar 

  149. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–30.

    Article  CAS  PubMed  Google Scholar 

  150. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34(10):2206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Boštjančič E, Zidar N, Štajer D, Glavač D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010;115(3):163–9.

    Article  PubMed  CAS  Google Scholar 

  153. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail. 2010;16(5):404–10.

    Article  CAS  PubMed  Google Scholar 

  154. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.

    Article  PubMed  CAS  Google Scholar 

  155. Callis TE, Pandya K, Seok HY, Tang R-H, Tatsuguchi M, Huang Z-P, Chen J-F, Deng Z, Gunn B, Shumate J. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  157. Zidar N, Boštjančič E, Glavač D, Štajer D. MicroRNAs, innate immunity and ventricular rupture in human myocardial infarction. Dis Markers. 2011;31(5):259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wu T, Wu D, Wu Q, Zou B, Huang X, Cheng X, Wu Y, Hong K, Li P, Yang R. Knockdown of long non-coding RNA-ZFAS1 protects cardiomyocytes against acute myocardial infarction via anti-apoptosis by regulating miR-150/CRP. J Cell Biochem. 2017;118(10):3281–9.

    Article  CAS  PubMed  Google Scholar 

  159. Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D, Razvi N, Zhang L, Ng LL, Wagner DR, Squire IB. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6(3):290–8.

    Article  CAS  PubMed  Google Scholar 

  160. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A. MicroRNAs in the human heart. Circulation. 2007;116(3):258–67.

    Article  CAS  PubMed  Google Scholar 

  161. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078.

    Article  PubMed  CAS  Google Scholar 

  162. Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(3):251–5.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liang H, Zhang C, Ban T, Liu Y, Mei L, Piao X, Zhao D, Lu Y, Chu W, Yang B. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol. 2012;44(12):2152–60.

    Article  CAS  PubMed  Google Scholar 

  164. Roy S, Khanna S, Hussain S-RA, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee K-H, Ma Q, Kang PM, Golub TR. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29(8):2193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rau F, Freyermuth F, Fugier C, Villemin J-P, Fischer M-C, Jost B, Dembele D, Gourdon G, Nicole A, Duboc D. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol. 2011;18(7):840.

    Article  CAS  PubMed  Google Scholar 

  169. Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload–induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc. 2013;2(2):e000078.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bagnall RD, Tsoutsman T, Shephard RE, Ritchie W, Semsarian C. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS One. 2012;7(9):e44744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.

    Article  CAS  PubMed  Google Scholar 

  172. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228.

    Article  CAS  PubMed  Google Scholar 

  173. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613.

    Article  CAS  PubMed  Google Scholar 

  174. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104(2):170–8.

    Article  CAS  PubMed  Google Scholar 

  175. Castaldi A, Zaglia T, Di Mauro V, Carullo P, Viggiani G, Borile G, Di Stefano B, Schiattarella GG, Gualazzi MG, Elia L. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ Res. 2014;115(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  176. Ali T, Mushtaq I, Maryam S, Farhan A, Saba K, Jan MI, Sultan A, Anees M, Duygu B, Hamera S. Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Arch Biochem Biophys. 2019;661:56–65.

    Article  CAS  PubMed  Google Scholar 

  177. Liu F, Li N, Long B, Fan Y, Liu C, Zhou Q, Murtaza I, Wang K, Li P. Cardiac hypertrophy is negatively regulated by miR-541. Cell Death Dis. 2014;5(4):e1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li P-F. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci. 2009;106(29):12103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jan MI, Khan RA, Ali T, Bilal M, Bo L, Sajid A, Malik A, Urehman N, Waseem N, Nawab J. Interplay of mitochondria apoptosis regulatory factors and microRNAs in valvular heart disease. Arch Biochem Biophys. 2017;633:50–7.

    Article  CAS  PubMed  Google Scholar 

  180. Long B, Wang K, Li N, Murtaza I, Xiao J-Y, Fan Y-Y, Liu C-Y, Li W-H, Cheng Z, Li P. miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med. 2013;65:371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang J-X, Gao J, Ding S-L, Wang K, Jiao J-Q, Wang Y, Sun T, Zhou L-Y, Long B, Zhang X-J. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol Cell. 2015;59(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  182. Ong S-B, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012.

    Article  CAS  PubMed  Google Scholar 

  183. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  184. Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284(20):13843–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang K, Zhou L-Y, Wang J-X, Wang Y, Sun T, Zhao B, Yang Y-J, An T, Long B, Li N. E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nat Commun. 2015;6:7619.

    Article  CAS  PubMed  Google Scholar 

  186. Li J, Zhou J, Li Y, Qin D, Li P. Mitochondrial fission controls DNA fragmentation by regulating endonuclease G. Free Radic Biol Med. 2010;49(4):622–31.

    Article  CAS  PubMed  Google Scholar 

  187. Li J, Li Y, Jiao J, Wang J, Li Y, Qin D, Li P. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol. 2014;34(10):1788–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Yang K-C, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med. 2016;8(326):326ra322.

    Article  CAS  Google Scholar 

  190. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389–97.

    Article  CAS  PubMed  Google Scholar 

  191. Liu J, Yao J, Li X, Song Y, Wang X, Li Y, Yan B, Jiang Q. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 2014;5(10):e1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang Y-N-Z, Shan K, Yao M-D, Yao J, Wang J-J, Li X, Liu B, Zhang Y-Y, Ji Y, Jiang Q. Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension. 2016;68(3):736–48.

    Article  CAS  PubMed  Google Scholar 

  193. Sepramaniam S, Tan J-R, Tan K-S, DeSilva D, Tavintharan S, Woon F-P, Wang C-W, Yong F-L, Karolina D-S, Kaur P. Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci. 2014;15(1):1418–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J. 2014;36(6):353–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y, Fan Y-Y, Li P-F. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5:3596.

    Article  PubMed  CAS  Google Scholar 

  196. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51(12):1087.

    Article  CAS  PubMed  Google Scholar 

  197. Eicher JD, Chami N, Kacprowski T, Nomura A, Chen M-H, Yanek LR, Tajuddin SM, Schick UM, Slater AJ, Pankratz N. Platelet-related variants identified by exomechip meta-analysis in 157,293 individuals. Am J Hum Genet. 2016;99(1):40–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Frade AF, Laugier L, Ferreira LRP, Baron MA, Benvenuti LA, Teixeira PC, Navarro IC, Cabantous S, Ferreira FM, da Silva Cândido D. Myocardial infarction–associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic chagas disease. J Infect Dis. 2016;214(1):161–5.

    Article  CAS  PubMed  Google Scholar 

  199. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell. 2006;11(4):547–60.

    Article  CAS  PubMed  Google Scholar 

  201. Hube F, Velasco G, Rollin J, Furling D, Francastel C. Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation. Nucleic Acids Res. 2010;39(2):513–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Finnemore A, Groves A. Physiology of the fetal and transitional circulation. In: Seminars in fetal and neonatal medicine: 2015. New York: Elsevier; 2015. p. 210–6.

    Google Scholar 

  203. Touma M, Kang X, Zhao Y, Cass AA, Gao F, Biniwale R, Coppola G, Xiao X, Reemtsen B, Wang Y. Decoding the long noncoding RNA during cardiac maturation: a roadmap for functional discovery. Circ Cardiovasc Genet. 2016;9(5):395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. de Boer BA, van den Berg G, de Boer PA, Moorman AF, Ruijter JM. Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas. Dev Biol. 2012;368(2):203–13.

    Article  PubMed  CAS  Google Scholar 

  205. Sun L, Zhang Y, Zhang Y, Gu Y, Xuan L, Liu S, Zhao X, Wang N, Huang L, Huang Y. Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy. Int J Cardiol. 2014;177(1):73–5.

    Article  PubMed  Google Scholar 

  206. Kadar A, Glasz T. Development of atherosclerosis and plaque biology. Cardiovasc Surg. 2001;9(2):109–21.

    Article  CAS  PubMed  Google Scholar 

  207. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke E, Blagosklonny M, El-Deiry W, Golstein P, Green D. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3.

    Article  CAS  PubMed  Google Scholar 

  208. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Orogo AM, Gustafsson ÅB. Cell death in the myocardium: my heart won’t go on. IUBMB Life. 2013;65(8):651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Skommer J, Rana I, Marques F, Zhu W, Du Z, Charchar F. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis. 2014;5(7):e1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gao CF, Ren S, Zhang L, Nakajima T, Ichinose S, Hara T, Koike K, Tsuchida N. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp Cell Res. 2001;265(1):145–51.

    Article  CAS  PubMed  Google Scholar 

  212. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem. 2000;275(40):31199–203.

    Article  CAS  PubMed  Google Scholar 

  213. Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Markou T, Pikkarainen S, Sugden PH. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol. 2007;212(2):311–22.

    Article  CAS  PubMed  Google Scholar 

  214. Boštjančič E, Zidar N, Glavač D. MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers. 2009;27(6):255–68.

    Article  PubMed  Google Scholar 

  215. Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 2009;50(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  216. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486.

    Article  CAS  PubMed  Google Scholar 

  217. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120(17):3045–52.

    Article  CAS  PubMed  Google Scholar 

  218. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106(1):166–75.

    Article  CAS  PubMed  Google Scholar 

  219. Wang H, Li J, Chi H, Zhang F, Zhu X, Cai J, Yang X. Micro RNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med. 2015;19(9):2084–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009;47(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6(1):e1000795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1a and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ren X-P, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan G-C. Clinical perspective. Circulation. 2009;119(17):2357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Murtaza I, Wang H-X, Mushtaq S, Javed Q, Li P-F. Interplay of phosphorylated apoptosis repressor with CARD, casein kinase-2 and reactive oxygen species in regulating endothelin-1–induced cardiomyocyte hypertrophy. Iran J Basic Med Sci. 2013;16(8):928.

    PubMed  PubMed Central  Google Scholar 

  225. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li P. MicroRNAs in cardiac apoptosis. J Cardiovasc Transl Res. 2010;3(3):219–24.

    Article  PubMed  Google Scholar 

  227. Wang J-X, Jiao J-Q, Li Q, Long B, Wang K, Liu J-P, Li Y-R, Li P-F. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011;17(1):71.

    Article  PubMed  CAS  Google Scholar 

  228. Wang K, Zhang D, Long B, An T, Zhang J, Zhou L, Liu C, Li P. NFAT4-dependent miR-324-5p regulates mitochondrial morphology and cardiomyocyte cell death by targeting Mtfr1. Cell Death Dis. 2015;6(12):e2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5.

    Article  CAS  PubMed  Google Scholar 

  230. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25.

    Article  CAS  PubMed  Google Scholar 

  231. Tony H, Yu K, Qiutang Z. MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxidative Med Cell Longev. 2015;2015:1–6.

    Article  CAS  Google Scholar 

  232. Wang J, Zhang X, Feng C, Sun T, Wang K, Wang Y, Zhou L, Li P. MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis. 2015;6(3):e1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, Jiang Y, Lv Q, Xiao X. MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci. 2015;16(7):14511–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Roca-Alonso L, Castellano L, Mills A, Dabrowska A, Sikkel M, Pellegrino L, Jacob J, Frampton A, Krell J, Coombes R. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis. 2015;6(5):e1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Papait R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 2013;6(6):876–83.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Piccoli M-T, Gupta SK, Thum T. Noncoding RNAs as regulators of cardiomyocyte proliferation and death. J Mol Cell Cardiol. 2015;89:59–67.

    Article  CAS  PubMed  Google Scholar 

  238. Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci. 2006;103(15):5781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kanduri C. Kcnq1ot1: a chromatin regulatory RNA. In: Seminars in cell & developmental biology: 2011. New York: Elsevier; 2011. p. 343–50.

    Google Scholar 

  240. Wang K, Long B, Liu F, Wang J-X, Liu C-Y, Zhao B, Zhou L-Y, Sun T, Wang M, Yu T. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37(33):2602–11.

    Article  CAS  PubMed  Google Scholar 

  241. Koseki T, Inohara N, Chen S, Núñez G. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci. 1998;95(9):5156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Li Y-Z, Lu D-Y, Tan W-Q, Wang J-X, Li P-F. p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol. 2008;28(2):564–74.

    Article  CAS  PubMed  Google Scholar 

  243. Haussecker D, Kay MA. Drugging RNAi. Science. 2015;347(6226):1069–70.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014;6(240):240ps247.

    Article  Google Scholar 

  245. Maheshwari R, Tekade M, A Sharma P, Kumar Tekade R. Nanocarriers assisted siRNA gene therapy for the management of cardiovascular disorders. Curr Pharm Des. 2015;21(30):4427–40.

    Article  CAS  PubMed  Google Scholar 

  246. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806.

    Article  CAS  PubMed  Google Scholar 

  247. Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner D-M, Jakob P, Nakagawa S, Blankenberg S. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2017;39(29):2704–16.

    Article  PubMed Central  CAS  Google Scholar 

  248. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. 2014;505(7485):635.

    Article  CAS  PubMed  Google Scholar 

  249. Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med. 2014;6(239):239ps233.

    Article  CAS  Google Scholar 

  250. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci. 2013;110(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  251. Yang Y, Cheng H-W, Qiu Y, Dupee D, Noonan M, Lin Y-D, Fisch S, Unno K, Sereti K-I, Liao R. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res. 2015;117(5):450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495(7439):107.

    Article  CAS  PubMed  Google Scholar 

  253. Bernardo BC, Gao X-M, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du X-J. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci. 2012;109(43):17615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu Q-F, Baloch E, van Rooij E, Zeiher AM, Kupatt C. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 2013;128(10):1066–75.

    Article  CAS  PubMed  Google Scholar 

  255. Bellera N, Barba I, Rodriguez-Sinovas A, Ferret E, Asín MA, Gonzalez-Alujas MT, Pérez-Rodon J, Esteves M, Fonseca C, Toran N. Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J Am Heart Assoc. 2014;3(5):e000946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Bonauer A, A Boon R, Dimmeler S. Vascular micrornas. Curr Drug Targets. 2010;11(8):943–9.

    Article  CAS  PubMed  Google Scholar 

  257. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci. 2008;105(35):13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980.

    Article  CAS  PubMed  Google Scholar 

  259. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E, Olson EN. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120(11):3912–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Gupta SK, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, Van Aelst LN, Sharma A, Piccoli M-T, Weinberger F. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110(2):215–26.

    Article  CAS  PubMed  Google Scholar 

  261. Lee DI, Zhu G, Sasaki T, Cho G-S, Hamdani N, Holewinski R, Jo S-H, Danner T, Zhang M, Rainer PP. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature. 2015;519(7544):472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Thum T, Chau N, Bhat B, Gupta SK, Linsley PS, Bauersachs J, Engelhardt S. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J Clin Invest. 2011;121(2):461–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Castoldi G, Di Gioia CR, Bombardi C, Catalucci D, Corradi B, Gualazzi MG, Leopizzi M, Mancini M, Zerbini G, Condorelli G. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850–6.

    Article  CAS  PubMed  Google Scholar 

  265. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation. 2012;126(7):840–50.

    Article  CAS  PubMed  Google Scholar 

  266. Frankel LB, Wen J, Lees M, Høyer-Hansen M, Farkas T, Krogh A, Jäättelä M, Lund AH. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011;30(22):4628–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 2010;122(23):2378–87.

    Article  CAS  PubMed  Google Scholar 

  268. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004;117(25):5965–73.

    Article  CAS  PubMed  Google Scholar 

  269. Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. microRNA are central players in anti-and profibrotic gene regulation during liver fibrosis. Front Physiol. 2012;3:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Roy S, Khanna S, Azad A, Schnitt R, He G, Weigert C, Ichijo H, Sen CK. Fra-2 mediates oxygen-sensitive induction of transforming growth factor β in cardiac fibroblasts. Cardiovasc Res. 2010;87(4):647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012;4(1):3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Su H, Yang J-R, Xu T, Huang J, Xu L, Yuan Y, Zhuang S-M. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69(3):1135–42.

    Article  CAS  PubMed  Google Scholar 

  273. Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508(7497):531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2013;1832(12):2414–24.

    Article  CAS  Google Scholar 

  275. Besser J, Malan D, Wystub K, Bachmann A, Wietelmann A, Sasse P, Fleischmann BK, Braun T, Boettger T. MiRNA-1/133a clusters regulate adrenergic control of cardiac repolarization. PLoS One. 2014;9(11):e113449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol. 2015;12(6):361.

    Article  CAS  PubMed  Google Scholar 

  277. Boon RA, Hergenreider E, Dimmeler S. Atheroprotective mechanisms of shear stress-regulated microRNAs. Thromb Haemost. 2012;108(10):616–20.

    Article  CAS  PubMed  Google Scholar 

  278. Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, Li Y-SJ, Chien S, Wang N. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci. 2010;107(7):3240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wang K-C, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, Wang N, Shyy JY, Li Y-S, Chien S. Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci. 2010;107(7):3234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100(11):1579–88.

    Article  CAS  PubMed  Google Scholar 

  281. Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122(2):497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJ, Vinciguerra M, Rosenthal N, Sciacca S, Pilato M. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109(10):1115–9.

    Article  CAS  PubMed  Google Scholar 

  283. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Li K, Ching D, Luk FS, Raffai RL. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB–driven inflammation and atherosclerosis. Circ Res. 2015;117(1):e1–e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Sun X, He S, Wara A, Icli B, Shvartz E, Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK. Systemic delivery of microRNA-181b inhibits nuclear factor-κb activation, vascular inflammation, and atherosclerosis in apolipoprotein E–deficient mice. Circ Res. 2014;114(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  286. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci. 2010;107(30):13450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6(7):851–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685.

    Article  PubMed  CAS  Google Scholar 

  289. Lennox KA, Behlke MA. A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res. 2010;27(9):1788–99.

    Article  CAS  PubMed  Google Scholar 

  290. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896.

    Article  PubMed  CAS  Google Scholar 

  291. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43(4):371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Meng L, Liu C, Lü J, Zhao Q, Deng S, Wang G, Qiao J, Zhang C, Zhen L, Lu Y. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, Smith KG, Enright AJ, Gait MJ, Vigorito E. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 2010;38(13):4466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 2008;18(4):305–20.

    Article  CAS  PubMed  Google Scholar 

  295. Li Y-G, Zhang P-P, Jiao K-L, Zou Y-Z. Knockdown of microRNA-181 by lentivirus mediated siRNA expression vector decreases the arrhythmogenic effect of skeletal myoblast transplantation in rat with myocardial infarction. Microvasc Res. 2009;78(3):393–404.

    Article  CAS  PubMed  Google Scholar 

  296. Choi W-Y, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science. 2007;318(5848):271–4.

    Article  CAS  PubMed  Google Scholar 

  297. Messina A, Langlet F, Chachlaki K, Roa J, Rasika S, Jouy N, Gallet S, Gaytan F, Parkash J, Tena-Sempere M. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci. 2016;19(6):835.

    Article  CAS  PubMed  Google Scholar 

  298. Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, Dalby CM, Kaminski N, van Rooij E. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med. 2014;6(10):1347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Lin R, Van Zandwijk N, Reid G. MicroRNA therapeutics—back in vogue. J Investig Genomics. 2014;1(2):57–8.

    Google Scholar 

  300. Bader AG. miR-34–a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci. 2014;127(6):351–65.

    Article  CAS  Google Scholar 

  302. Iaconetti C, Polimeni A, Sorrentino S, Sabatino J, Pironti G, Esposito G, Curcio A, Indolfi C. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol. 2012;107(5):296.

    Article  PubMed  CAS  Google Scholar 

  303. Loyer X, Potteaux S, Vion A-C, Guérin CL, Boulkroun S, Rautou P-E, Ramkhelawon B, Esposito B, Dalloz M, Paul J-L. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114(3):434–43.

    Article  CAS  PubMed  Google Scholar 

  304. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Norata GD, Sala F, Catapano AL, Fernández-Hernando C. MicroRNAs and lipoproteins: a connection beyond atherosclerosis? Atherosclerosis. 2013;227(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  306. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108(12):5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Wang G-K, Zhu J-Q, Zhang J-T, Li Q, Li Y, He J, Qin Y-W, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66.

    Article  PubMed  CAS  Google Scholar 

  308. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SLT, Wong MT, Lim SC, Sum CF, Jeyaseelan K. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metabol. 2012;97(12):E2271–6.

    Article  CAS  Google Scholar 

  309. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499–506.

    Article  PubMed  Google Scholar 

  310. Huang F, Zhu X, Hu X-Q, Fang Z-F, Tang L, Lu X-L, Zhou S-H. Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med. 2013;31(2):484–92.

    Article  CAS  PubMed  Google Scholar 

  311. Sharma S, Jackson P, Makan J. Cardiac troponins. London: BMJ Publishing Group; 2004.

    Book  Google Scholar 

  312. Thygesen K, Alpert JS, White HD, Jaffe AS, Apple FS, Galvani M, Katus HA, Newby LK, Ravkilde J, Chaitman B. Universal definition of myocardial infarction: Kristian Thygesen, Joseph S. Alpert and Harvey D. White on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Eur Heart J. 2007;28(20):2525–38.

    Article  PubMed  Google Scholar 

  313. Holland R, Brooks H. The QRS complex during myocardial ischemia. An experimental analysis in the porcine heart. J Clin Invest. 1976;57(3):541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC, Thum T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872–5.

    Article  CAS  PubMed  Google Scholar 

  315. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84.

    Article  CAS  PubMed  Google Scholar 

  316. C-f X, Yu C-h, Li Y-m. Regulation of hepatic microRNA expression in response to ischemic preconditioning following ischemia/reperfusion injury in mice. OMICS J Integr Biol. 2009;13(6):513–20.

    Article  CAS  Google Scholar 

  317. Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of micro RNA s in diagnosis and treatment of cardiovascular disease. Acta Physiol. 2015;213(1):60–83.

    Article  CAS  Google Scholar 

  318. Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res. 2007;77(2):265–73.

    Article  PubMed  CAS  Google Scholar 

  319. Boštjančič E, Zidar N, Glavač D. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis. BMC Genomics. 2012;13(1):552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Ward JA, Esa N, Pidikiti R, Freedman JE, Keaney JF, Tanriverdi K, Vitseva O, Ambros V, Lee R, McManus DD. Circulating cell and plasma microRNA profiles differ between non-ST-segment and ST-segment-elevation myocardial infarction. Fam Med Med Sci Res. 2013;2(2):108.

    PubMed  PubMed Central  Google Scholar 

  321. Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La Sala L, Galeazzi R. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531–6.

    Article  PubMed  Google Scholar 

  322. Icli B, Dorbala P, Feinberg MW. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc Med. 2014;24(6):241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Rink C, Khanna S (2010) MicroRNA in ischemic stroke etiology and pathology. Am J Physiol Heart Circ Physiol

    Google Scholar 

  324. Sandercock PA, Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;9:CD000064.

    Google Scholar 

  325. Ouyang Y-B, Giffard RG. MicroRNAs regulate the chaperone network in cerebral ischemia. Transl Stroke Res. 2013;4(6):693–703.

    Article  CAS  PubMed  Google Scholar 

  326. Stary CM, Giffard RG. Advances in astrocyte-targeted approaches for stroke therapy: an emerging role for mitochondria and microRNAS. Neurochem Res. 2015;40(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  327. Dharap A, Bowen K, Place R, Li L-C, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–87.

    Article  CAS  PubMed  Google Scholar 

  328. Tan J, Tan K, Koo Y, Yong F, Wang C, Armugam A, Jeyaseelan K. Blood microRNAs in low or no risk ischemic stroke patients. Int J Mol Sci. 2013;14(1):2072–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Tsai P-C, Liao Y-C, Wang Y-S, Lin H-F, Lin R-T, Juo S-HH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res. 2013;50(4):346–54.

    Article  CAS  PubMed  Google Scholar 

  330. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  CAS  PubMed  Google Scholar 

  331. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Li K, Zhang T, Fan H, Li Q, Ito W, Torzewski J, Guo J, Liu Z. The analysis of microRNA expression profiling for coronary artery disease. Cardiology. 2014;127(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  333. Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14(8):529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B. CaMK4 gene deletion induces hypertension. J Am Heart Assoc. 2012;1(4):e001081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  335. Kumar R, Kohli S, Mishra A, Garg R, Alam P, Stobdan T, Nejatizadeh A, Gupta M, Tyagi S, Pasha MQ. Interactions between the genes of vasodilatation pathways influence blood pressure and nitric oxide level in hypertension. Am J Hypertens. 2014;28(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  336. Santulli G, Trimarco B, Iaccarino G. G-protein-coupled receptor kinase 2 and hypertension. High Blood Press Cardiovas Prevent. 2013;20(1):5–12.

    Article  CAS  Google Scholar 

  337. Hindorff LA, Heckbert SR, Tracy R, Tang Z, Psaty BM, Edwards KL, Siscovick DS, Kronmal RA, Nazar-Stewart V. Angiotensin II type 1 receptor polymorphisms in the cardiovascular health study: relation to blood pressure, ethnicity, and cardiovascular events. Am J Hypertens. 2002;15(12):1050–6.

    Article  CAS  PubMed  Google Scholar 

  338. Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, Fabricio AS, Squarcina E, Gion M, Palatini P. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24(2):241–6.

    Article  CAS  PubMed  Google Scholar 

  339. Eskildsen T, Jeppesen P, Schneider M, Nossent A, Sandberg M, Hansen P, Jensen C, Hansen M, Marcussen N, Rasmussen L. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14(6):11190–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  340. Nossent AY, Hansen JL, Doggen C, Quax PH, Sheikh SP, Rosendaal FR. SNPs in microRNA binding sites in 3′-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens. 2011;24(9):999–1006.

    Article  PubMed  CAS  Google Scholar 

  341. Kontaraki J, Marketou M, Zacharis E, Parthenakis F, Vardas P. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28(8):510.

    Article  CAS  PubMed  Google Scholar 

  342. Carpinella G, Pagano G, Buono F, Petitto M, Guarino G, Orefice G, Rengo G, Trimarco B, Morisco C. Prognostic value of combined target-organ damage in patients with essential hypertension. Am J Hypertens. 2014;28(1):127–34.

    Article  PubMed  CAS  Google Scholar 

  343. Latronico MV, Condorelli G. microRNAs in hypertrophy and heart failure. Exp Biol Med. 2011;236(2):125–31.

    Article  CAS  Google Scholar 

  344. Van Wagoner DR, Nerbonne JM. Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol. 2000;32(6):1101–17.

    Article  PubMed  Google Scholar 

  345. Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol. 2008;45(2):185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Phys Heart Circ Phys. 2012;303:H1085.

    CAS  Google Scholar 

  347. Ellis KL, Cameron VA, Troughton RW, Frampton CM, Ellmers LJ, Richards AM. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail. 2013;15(10):1138–47.

    Article  CAS  PubMed  Google Scholar 

  348. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. elife. 2013;2:e01749.

    Article  PubMed  PubMed Central  Google Scholar 

  349. Schuettengruber B, Martinez A-M, Iovino N, Cavalli G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12(12):799.

    Article  CAS  PubMed  Google Scholar 

  350. Rizki G, Boyer LA. Lnc ing epigenetic control of transcription to cardiovascular development and disease. Circ Res. 2015;117(2):192–206.

    Article  CAS  PubMed  Google Scholar 

  351. Ounzain S, Micheletti R, Arnan C, Plaisance I, Cecchi D, Schroen B, Reverter F, Alexanian M, Gonzales C, Ng SY. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol. 2015;89:98–112.

    Article  CAS  PubMed  Google Scholar 

  352. Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M, Hosseini M, Vernimmen D. Intragenic enhancers act as alternative promoters. Mol Cell. 2012;45(4):447–58.

    Article  CAS  PubMed  Google Scholar 

  353. Ounzain S, Pezzuto I, Micheletti R, Burdet F, Sheta R, Nemir M, Gonzales C, Sarre A, Alexanian M, Blow MJ. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J Mol Cell Cardiol. 2014;76:55–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L. The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem. 2011;286(32):28312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee T-H, Miano JM, Ivey KN, Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. He C, Hu H, Wilson KD, Wu H, Feng J, Xia S, Churko J, Qu K, Chang HY, Wu JC. Systematic characterization of long noncoding RNAs reveals the contrasting coordination of cis-and trans-molecular regulation in human fetal and adult hearts. Circ Cardiovasc Genet. 2016;9(2):110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn GW. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci. 2014;111(33):12264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Kurian L, Aguirre A, Sancho-Martinez I, Benner C, Hishida T, Nguyen TB, Reddy P, Nivet E, Krause MN, Nelles DA. Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation. 2015;131(14):1278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B. A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS One. 2014;9(1):e87797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. 2017;7:42657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Wang K, Liu F, Zhou L-Y, Long B, Yuan S-M, Wang Y, Liu C-Y, Sun T, Zhang X-J, Li P-F. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114(9):1377–88.

    Article  CAS  PubMed  Google Scholar 

  362. Piccoli M-T, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K, Batkai S. Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res. 2017;121(5):575–83.

    Article  CAS  PubMed  Google Scholar 

  363. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y, Wang Z-M, Wang F, Yang Z-J, Lu X. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res/Fundam Mol Mech Mutagen. 2015;772:15–22.

    Article  CAS  Google Scholar 

  365. Ali T, Waheed H, Shaheen F, Mahmud M, Javed Q, Murtaza I. Increased endogenous serotonin level in diabetic conditions may lead to cardiac valvulopathy via reactive oxygen species regulation. Biologia. 2015;70(2):273–8.

    Article  CAS  Google Scholar 

  366. Fiedler J, Breckwoldt K, Remmele CW, Hartmann D, Dittrich M, Pfanne A, Just A, Xiao K, Kunz M, Müller T. Development of long noncoding RNA-based strategies to modulate tissue vascularization. J Am Coll Cardiol. 2015;66(18):2005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Bell RD, Long X, Lin M, Bergmann JH, Nanda V, Cowan SL, Zhou Q, Han Y, Spector DL, Zheng D. Identification and initial functional characterization of a human vascular cell–enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014;34(6):1249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, Watt A, Bui H-h, Younis H, Sabripour M. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res. 2015;44(5):2093–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  369. Lucas T, Dimmeler S. RNA therapeutics for treatment of cardiovascular diseases: promises and challenges. Circ Res. 2016;119(7):794–7.

    Article  CAS  PubMed  Google Scholar 

  370. Kasuya T, Hori S-i, Watanabe A, Nakajima M, Gahara Y, Rokushima M, Yanagimoto T, Kugimiya A. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci Rep. 2016;6:30377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA–guided activation of endogenous human genes. Nat Methods. 2013;10(10):977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3(5):370.

    Article  CAS  PubMed  Google Scholar 

  373. Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q, Geng B. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One. 2013;8(10):e77938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449–55.

    Article  CAS  PubMed  Google Scholar 

  375. Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res. 2014;114(10):1569–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Higher Education Commission of Pakistan Grant to Murtaza I (6165/Federal/NRPU/R&D/HEC/2016) and the URF, QAU funds to Murtaza I.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iram Murtaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, I., Ishtiaq, A., Ali, T., Jan, M.I., Murtaza, I. (2020). An Overview of Non-coding RNAs and Cardiovascular System. In: Xiao, J. (eds) Non-coding RNAs in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 1229. Springer, Singapore. https://doi.org/10.1007/978-981-15-1671-9_1

Download citation

Publish with us

Policies and ethics