Skip to main content

Polyunsaturated Fatty Acid-Loaded Nanomedicine for Solid Tumor

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

Omega-3 and omega-6 polyunsaturated fatty acids are two major class of PUFAs present as essential cellular components which obtained various bioactivities. The omega-3 are found in seafood, and there are many beneficial effects on human health, as long as the omega-6 are more abundant in human daily diet and could be involve in many pathological processes including cancer growth. Increasing indication suggests that the adverse effects of omega-6 may be largely replant to arachidonic acid and the metabolite prostaglandin E2 that stems from its cyclooxygenase (COX)-catalyzed lipid peroxidation. On the other hand, omega-6, that is, γ-linolenic acid (GLA), are shown to possess certain anticancer activities, inducing cell apoptosis and preventing cell proliferation. In this chapter, we review the documented anticancer activities of omega-6 PUFAs, together with the current results regarding the anticancer effects of free radical-mediated DGLA peroxidation. In view of the wide accessibility of omega-6 in diet, the study of the possible beneficial effect of omega-6 PUFAs may guide strategy for tumor prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132

    Article  PubMed  Google Scholar 

  3. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66:271–289

    Article  PubMed  Google Scholar 

  4. Coleman KM, Doherty MC, Bigler SA (2003) Solid-pseudopapillary tumor of the pancreas. Radiographics 23:1644–1648

    Article  PubMed  Google Scholar 

  5. Scully RE (1987) Classification of human ovarian tumors. Environ Health Perspect 73:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicholson R, Gee J, Harper M (2001) EGFR and cancer prognosis. Eur J Cancer 37:9–15

    Article  Google Scholar 

  7. Avlani D, Majee SB, Biswas GR (2016) Magnet-guided nanovectors as agents for magnetofection in therapeutic management of solid tumors. World J Pharm Res 5(7):469

    CAS  Google Scholar 

  8. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  9. Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1:1–6

    Article  Google Scholar 

  10. Rogers B, Adams J, Pennathur S (2014) Nanotechnology: understanding small systems. CRC, New York

    Book  Google Scholar 

  11. De Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rahman M, Ahmed MZ, Kazmi I et al (2012) Novel approach for the treatment of cancer: theranostic nanomedicines. Pharmacologia 3:371–376

    Article  CAS  Google Scholar 

  13. Tattrie NH, Bennett J, Cyr R (1968) Maximum and minimum values for lecithin classes from various biological sources. Can J Biochem 46:819–824

    Article  CAS  PubMed  Google Scholar 

  14. Demel R, Geurts van Kessel W, van Deenen L (1972) The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol. Biochim Biophys Acta Biomembr 266:26–40

    Article  CAS  Google Scholar 

  15. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  16. Ander BP, Dupasquier CM, Prociuk MA, Pierce GN (2003) Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp Clin Cardiol 8:164

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Russo GL (2009) Dietary n− 6 and n− 3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77:937–946

    Article  CAS  PubMed  Google Scholar 

  18. Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    Article  CAS  PubMed  Google Scholar 

  19. Gopalan C (2006) Essential fatty acids in maternal diets. Bull Nutr Found India 27(1)

    Google Scholar 

  20. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S–1519S

    Article  CAS  PubMed  Google Scholar 

  21. Bell M, Henderson R, Sargent J (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Physiol B Comp Biochem 83:711–719

    Article  CAS  Google Scholar 

  22. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276:16683–16689

    Article  CAS  PubMed  Google Scholar 

  23. Leyton J, Drury P, Crawford M (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57:383–393

    Article  CAS  PubMed  Google Scholar 

  24. Kris-Etherton PM (1999) Monounsaturated fatty acids and risk of cardiovascular disease. Circulation 100:1253–1258

    Article  CAS  PubMed  Google Scholar 

  25. Grundy SM (1987) Monounsaturated fatty acids, plasma cholesterol, and coronary heart disease. Am J Clin Nutr (USA). https://doi.org/10.1093/ajcn/45.5.1168

  26. Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560s–569s

    Article  CAS  PubMed  Google Scholar 

  27. Das UN (2006a) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J Healthcare Nutr Technol 1:420–439

    CAS  Google Scholar 

  28. Mattson FH, Grundy SM (1985) Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res 26:194–202

    CAS  PubMed  Google Scholar 

  29. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  30. Das U (1990) Gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid as potential anticancer drugs. Nutrition (Burbank, Los Angeles County, Calif.) 6:429–434

    CAS  Google Scholar 

  31. Kapoor R, Huang Y-S (2006) Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol 7:531–534

    Article  CAS  PubMed  Google Scholar 

  32. Robinson LE, Buchholz AC, Mazurak VC (2007) Inflammation, obesity, and fatty acid metabolism: influence of n-3 polyunsaturated fatty acids on factors contributing to metabolic syndrome. Appl Physiol Nutr Metab 32:1008–1024

    Article  CAS  PubMed  Google Scholar 

  33. Salem N (1999) Introduction to polyunsaturated fatty acids. Background 3:1–8

    Google Scholar 

  34. Brzeski M, Madhok R, Capell H (1991) Evening primrose oil in patients with rheumatoid arthritis and side-effects of non-steroidal anti-inflammatory drugs. Rheumatology 30:370–372

    Article  CAS  Google Scholar 

  35. DeLuca P, Rossetti R, Alavian C, Karim P, Zurier R (1999) Effects of gammalinolenic acid on interleukin-1 beta and tumor necrosis factor-alpha secretion by stimulated human peripheral blood monocytes: studies in vitro and in vivo. J Invest Med 47:246–250

    CAS  Google Scholar 

  36. Gillis RC, Daley BJ, Enderson BL, Karlstad MD (2004) Inhibition of 5-lipoxygenase induces cell death in anti-inflammatory fatty acid-treated HL-60 cells. J Parenter Enter Nutr 28:308–314

    Article  CAS  Google Scholar 

  37. Ziboh VA, Naguwa S, Vang K, Wineinger J, Morrissey BM, McIntyre J, Watnik M, Gershwin ME (2004) Suppression of leukotriene B 4 generation by ex-vivo neutrophils isolated from asthma patients on dietary supplementation with gammalinolenic acid-containing borage oil: possible implication in asthma. Clin Dev Immunol 11:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mainou-Fowler T, Proctor SJ, Dickinson AM (2001) γ-Linolenic acid induces apoptosis in B-chronic lymphocytic leukaemia cells in vitro. Leuk Lymphoma 40:393–403

    Article  CAS  PubMed  Google Scholar 

  39. Sagar PS, Das U, Koratkar R, Ramesh G, Padma M, Kumar GS (1992) Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells: relationship to free radicals and lipid peroxidation and its modulation by calmodulin antagonists. Cancer Lett 63:189–198

    Article  CAS  PubMed  Google Scholar 

  40. Watkins G, Martin TA, Bryce R, Mansel RE, Jiang WG (2005) γ-Linolenic acid regulates the expression and secretion of SPARC in human cancer cells. Prostaglandins Leukot Essent Fat Acids 72:273–278

    Article  CAS  Google Scholar 

  41. Coste T, Pierlovisi M, Leonardi J, Dufayet D, Gerbi A, Lafont H, Vague P, Raccah D (1999) Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats. J Nutr Biochem 10:411–420

    Article  CAS  PubMed  Google Scholar 

  42. Jamal G (1994) The use of gamma linolenic acid in the prevention and treatment of diabetic neuropathy. Diabet Med 11:145–149

    Article  CAS  PubMed  Google Scholar 

  43. Begin ME, Ells G, Horrobin DF (1988) Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst 80:188–194

    Article  CAS  PubMed  Google Scholar 

  44. Ells GW, Chisholm KA, Simmons VA, Horrobin DF (1996) Vitamin E blocks the cytotoxic effect of γ-linolenic acid when administered as late as the time of onset of cell death—insight into the mechanism of fatty acid induced cytotoxicity. Cancer Lett 98:207–211

    CAS  PubMed  Google Scholar 

  45. Damtew B, Spagnuolo P (1997) Tumor cell-endothelial cell interactions: evidence for roles for lipoxygenase products of arachidonic acid in metastasis. Prostaglandins Leukot Essent Fat Acids 56:295–300

    Article  CAS  Google Scholar 

  46. Earashi M, Noguchi M, Kinoshita K, Tanaka M (1995) Effects of eicosanoid synthesis inhibitors on the in vitro growth and prostaglandin E and leukotriene B secretion of a human breast cancer cell line. Oncology 52:150–155

    Article  CAS  PubMed  Google Scholar 

  47. CRAWFORD MA (1983) Background to essential fatty acids and their prostanoid derivatives. Br Med Bull 39:210–213

    Article  CAS  PubMed  Google Scholar 

  48. Abou El-Ela SH, Prasse KW, Carroll R, Bunce OR (1987) Effects of dietary primrose oil on mammary tumorigenesis induced by 7, 12-dimethylbenz (a) anthracene. Lipids 22:1041–1044

    Article  CAS  Google Scholar 

  49. Bell JG, Tocher DR, MacDonald FM, Sargent JR (1995) Diets rich in eicosapentaenoic acid and γ-linolenic acid affect phospholipid fatty acid composition and production of prostaglandins E1, E2 and E3 in turbot (Scophthalmus maximus), a species deficient in Δ5 fatty acid desaturase. Prostaglandins Leukot Essent Fat Acids 53:279–286

    Article  CAS  Google Scholar 

  50. Rose DP, Connolly JM, Liu XH (1995) Effects of linoleic acid and γ-linolenic acid on the growth and metastasis of a human breast cancer cell line in nude mice and on its growth and invasive capacity in vitro. Nutr Cancer 24(1):33–45

    Article  CAS  PubMed  Google Scholar 

  51. Harnack K, Andersen G, Somoza V (2009) Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids. Nutr Metab 6:8

    Article  CAS  Google Scholar 

  52. Barre DE (2007) The role of consumption of alpha-linolenic, eicosapentaenoic and docosahexaenoic acids in human metabolic syndrome and type 2 diabetes—a mini-review. J Oleo Sci 56:319–325

    Article  CAS  PubMed  Google Scholar 

  53. Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43

    Article  CAS  PubMed  Google Scholar 

  54. McNamara RK, Carlson SE (2006) Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fat Acids 75:329–349

    Article  CAS  Google Scholar 

  55. Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83:217–244

    Article  CAS  PubMed  Google Scholar 

  56. Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289

    Article  PubMed  Google Scholar 

  57. Meyer BJ, Mann NJ, Lewis JL, Milligan GC, Sinclair AJ, Howe PR (2003) Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 38:391–398

    Article  CAS  PubMed  Google Scholar 

  58. Tocher DR, Francis DS, Coupland K (2010) n-3 Polyunsaturated fatty acid-rich vegetable oils and blends. In: Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC, New York, pp 209–244

    Chapter  Google Scholar 

  59. Sargent J (1997) Fish oils and human diet. Br J Nutr 78:S5–S13

    Article  CAS  PubMed  Google Scholar 

  60. Saini RK, Keum Y-S (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance—a review. Life Sci 203:255–267

    Article  CAS  PubMed  Google Scholar 

  61. Berquin IM, Edwards IJ, Chen YQ (2008) Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 269:363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  CAS  PubMed  Google Scholar 

  63. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, Mibu R, Tanaka M, Kakeji Y, Maehara Y (2007) Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer: The Fukuoka Colorectal Cancer Study. Cancer Sci 98:590–597

    Article  CAS  PubMed  Google Scholar 

  65. Zheng J-S, Hu X-J, Zhao Y-M, Yang J, Li D (2013) Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 346:f3706

    Article  PubMed  Google Scholar 

  66. Williams CD, Whitley BM, Hoyo C, Grant DJ, Iraggi JD, Newman KA, Gerber L, Taylor LA, McKeever MG, Freedland SJ (2011) A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res 31:1–8

    Article  CAS  PubMed  Google Scholar 

  67. Siddiqui RA, Harvey KA, Zaloga GP (2008) Modulation of enzymatic activities by n-3 polyunsaturated fatty acids to support cardiovascular health. J Nutr Biochem 19:417–437

    Article  CAS  PubMed  Google Scholar 

  68. Das UN (2004) From bench to the clinic: γ-linolenic acid therapy of human gliomas. Prostaglandins Leukot Essent Fat Acids 70:539–552

    Article  CAS  Google Scholar 

  69. Menendez JA, Colomer R, Lupu R (2004) ω-6 polyunsaturated fatty acid γ-linolenic acid (18: 3n-6) is a selective estrogen-response modulator in human breast cancer cells: γ-linolenic acid antagonizes estrogen receptor-dependent transcriptional activity, transcriptionally represses estrogen receptor expression and synergistically enhances tamoxifen and ICI 182,780 (Faslodex) efficacy in human breast cancer cells [2]. Int J Cancer 109:949–954

    Article  CAS  PubMed  Google Scholar 

  70. Jiang WG, Bryce R, Mansel R (1997a) Gamma linolenic acid regulates gap junction communication in endothelial cells and their interaction with tumour cells. Prostaglandins Leukot Essent Fat Acids 56:307–316

    Article  CAS  Google Scholar 

  71. Jiang WG, Hiscox S, Horrobin DF, Bryce RP, Mansel RE (1997b) Gamma linolenic acid regulates expression of maspin and the motility of cancer cells. Biochem Biophys Res Commun 237:639–644

    Article  CAS  PubMed  Google Scholar 

  72. Jiang WG, Hiscox S, Bryce R, Horrobin D, Mansel RE (1998) The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br J Cancer 77:731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davies C, Loizidou M, Cooper A, Taylor I (1999) Effect of γ-linolenic acid on cellular uptake of structurally related anthracyclines in human drug sensitive and multidrug resistant bladder and breast cancer cell lines. Eur J Cancer 35:1534–1540

    Google Scholar 

  74. Menéendez JA, Ropero S, del Mar Barbacid M, Montero S, Solanas M, Escrich E, Cortés-Funes H, Colomer R (2002) Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Res Treat 72:203–219

    Article  Google Scholar 

  75. Menendez J, del Mar Barbacid M, Montero S, Sevilla E, Escrich E, Solanas M, Cortes-Funes H, Colomer R (2001) Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells. Eur J Cancer 37:402–413

    Article  CAS  PubMed  Google Scholar 

  76. Whitehouse P, Cooper A, Johnson C, Adrian TE (2003) Synergistic activity of gamma-linolenic acid and cytotoxic drugs against pancreatic adenocarcinoma cell lines. Pancreatology 3:367–374

    Article  CAS  PubMed  Google Scholar 

  77. Kenny FS, Pinder SE, Ellis IO, Gee JM, Nicholson RI, Bryce RP, Robertson JF (2000) Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. Int J Cancer 85:643–648

    Article  CAS  PubMed  Google Scholar 

  78. Das U, Prasad V, Reddy DR (1995) Local application of γ-linolenic acid in the treatment of human gliomas. Cancer Lett 94:147–155

    Article  CAS  PubMed  Google Scholar 

  79. Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, Bernardini G (2010) Nanotechnology and human health: risks and benefits. J Appl Toxicol 30:730–744

    Article  CAS  PubMed  Google Scholar 

  80. Chow EK-H, Ho D (2013) Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 5:216rv214

    Google Scholar 

  81. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  82. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  PubMed  Google Scholar 

  83. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example, drug delivery. Springer, New York, pp 3–53

    Google Scholar 

  84. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu L, Staley C, Kooby D, El-Rays B, Mao H, Yang L (2017) Current status of biomarker and targeted nanoparticle development: the precision oncology approach for pancreatic cancer therapy. Cancer Lett 388:139–148

    Article  CAS  PubMed  Google Scholar 

  86. Anchordoquy TJ, Barenholz Y, Boraschi D, Chorny M, Decuzzi P, Dobrovolskaia MA, Farhangrazi ZS, Farrell D, Gabizon A, Ghandehari H (2017) Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS, Washington, DC

    Google Scholar 

  87. Rahman M, Akhter S, Ahmad MZ, Ahmad J, Addo RT, Ahmad FJ, Pichon C (2015) Emerging advances in cancer nanotheranostics with graphene nanocomposites: opportunities and challenges. Nanomedicine. 10(15):2405–2422

    Google Scholar 

  88. Rahman M, Zaki Ahmad M, Kazmi I, Akhter S, Afzal M, Gupta G, Ranjan SV (2012) Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr Drug Discov Technol 9(4):319–329

    Google Scholar 

  89. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20

    Article  CAS  PubMed  Google Scholar 

  90. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  91. Klepper J, Wang D, Fischbarg J, Vera JC, Jarjour IT, O’Driscoll KR, Darryl C (1999) Defective glucose transport across brain tissue barriers: a newly recognized neurological syndrome. Neurochem Res 24:587–594

    Article  CAS  PubMed  Google Scholar 

  92. Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13:1099–1106

    Article  CAS  PubMed  Google Scholar 

  93. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615

    Article  CAS  PubMed  Google Scholar 

  94. Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4:81

    Article  CAS  Google Scholar 

  95. McNeil SE (2011) Unique benefits of nanotechnology to drug delivery and diagnostics. In: Characterization of nanoparticles intended for drug delivery. Springer, New York, pp 3–8

    Chapter  Google Scholar 

  96. Lockman P, Mumper R, Khan M, Allen D (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28:1–13

    Article  CAS  PubMed  Google Scholar 

  97. Begley DJ (1996) The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48:136–146

    Article  CAS  PubMed  Google Scholar 

  98. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37:48–57

    Article  CAS  PubMed  Google Scholar 

  99. Zeng Y, Song JX, Shen XC (2012) Herbal remedies supply a novel prospect for the treatment of atherosclerosis: a review of current mechanism studies. Phytother Res 26:159–167

    Article  CAS  PubMed  Google Scholar 

  100. Saraf S (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81:680–689

    Article  PubMed  CAS  Google Scholar 

  101. Devi VK, Jain N, Valli KS (2010) Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev 4:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chuan L, ZHANG J, Yu-Jiao Z, Shu-Fang N, Jun C, Qian W, Shao-Ping N, Ze-Yuan D, Ming-Yong X, Shu W (2015) Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med 13:641–652

    PubMed Central  Google Scholar 

  103. Rahman M, Ahmad MZ, Kazmi I, Akhter S, Afzal M, Gupta G, Jalees Ahmed F, Anwar F (2012) Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv 9(4):367–381

    Google Scholar 

  104. Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23:H217–H247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rahman M, Ahmad MZ, Kazmi I, Akhter S, Kumar Y, Ahmad FJ, Anwar F (2012) Novel approach for the treatment of cancer: theranostic nanomedicine. Pharmacologia 3(9):371–376

    Article  CAS  Google Scholar 

  106. Xie J, Yang Z, Zhou C, Zhu J, Lee RJ, Teng L (2016) Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv 34:343–353

    Article  CAS  PubMed  Google Scholar 

  107. Wang H, Oo Khor T, Shu L, Su Z-Y, Fuentes F, Lee J-H, Tony Kong A-N (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 12:1281–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu W, Luo L, Wang Y, Wu Q, Dai H-B, Li J-S, Durkan C, Wang N, Wang G-X (2018) Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 8:3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu Y, Qian SY (2014) Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biom J 37:112

    Google Scholar 

  110. Das UN (2006b) Tumoricidal and anti-angiogenic actions of gamma-linolenic acid and its derivatives. Curr Pharm Biotechnol 7:457–466

    Article  CAS  PubMed  Google Scholar 

  111. Backes J, Anzalone D, Hilleman D, Catini J (2016) The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis 15:118

    Google Scholar 

  112. Menendez JA, Vellon L, Colomer R, Lupu R (2005) Effect of γ-linolenic acid on the transcriptional activity of the Her-2/neu (erbB-2) oncogene. J Natl Cancer Inst 97:1611–1615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saad, S., Beg, S., Ahmad, F.J. (2020). Polyunsaturated Fatty Acid-Loaded Nanomedicine for Solid Tumor. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_6

Download citation

Publish with us

Policies and ethics