Skip to main content

Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics

  • Protocol
  • First Online:
Characterization of Nanoparticles Intended for Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 697))

Abstract

Nanotechnology offers many potential benefits to medical research by making pharmaceuticals more efficacious and by decreasing their adverse side-effects. Preclinical characterization of nanoparticles intended for medical applications is complicated – due to the variety of materials used, their unique surface properties and multifunctional nature. This chapter serves as an introduction to the volume, giving a broad overview of applications of nanotechnology to medicine, and describes some of the beneficial aspects of nanotechnology-based drug delivery. We define nanotechnology and provide brief descriptions of the major classes of nanomaterials used for medical applications. The following two chapters discuss scientific and regulatory hurdles involved in the use of nanotechnology in medicine. The remaining bulk of the volume provides the reader with protocols that have been tested against clinically relevant nanoparticles and describes some of the nuances of nanoparticle types and necessary controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.nano.gov/html/facts/whatIsNano.html

  2. Harris, J.M., Chess, R.B. (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2, 214–21.

    Article  CAS  Google Scholar 

  3. Fang, J., Sawa, T., Maeda, H. (2003) Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 519, 29–49.

    Article  CAS  Google Scholar 

  4. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K. (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65, 271–84.

    Article  CAS  Google Scholar 

  5. Sahoo, S.K., Labhasetwar, V. (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8, 1112–20.

    Article  CAS  Google Scholar 

  6. Ravi Kumar, M., Hellermann, G., Lockey, R.F., Mohapatra, S.S. (2004) Nanoparticle-mediated gene delivery: state of the art. Expert Opin Biol Ther 4, 1213–24.

    Article  CAS  Google Scholar 

  7. Paciotti, G.F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R.E., Tamarkin, L. (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11, 169–83.

    Article  CAS  Google Scholar 

  8. Desai, N., Trieu, V., Yao, Z., Louie, L., Ci, S., Yang, A., Tao, C., De, T., Beals, B., Dykes, D., Noker, P., Yao, R., Labao, E., Hawkins, M., Soon-Shiong, P. (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12, 1317–24.

    Article  CAS  Google Scholar 

  9. Green, M.R., Manikhasm, G.M., Orlovm, S., Afanasyev, B., Makhson, A.M., Bhar, P., Hawkins, M.J. (2006) Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17, 1263–8.

    Article  CAS  Google Scholar 

  10. Patri, A.K., Kukowska-Latallo, J.F., Baker, J.R. Jr. (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57, 2203–14.

    Article  CAS  Google Scholar 

  11. Huwyler, J., Wu, D., Pardridge, W.M. (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93, 14164–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has been funded in whole or in part by federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. McNeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McNeil, S.E. (2011). Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics. In: McNeil, S. (eds) Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, vol 697. Humana Press. https://doi.org/10.1007/978-1-60327-198-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-198-1_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-197-4

  • Online ISBN: 978-1-60327-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics