Skip to main content

Biodegradable Copolyester-Based Natural Fibers–Polymer Composites: Morphological, Mechanical, and Degradation Behavior

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Random disposal and accumulation of commodity plastics in the open environment after their end use is an issue that has triggered a lot of concerns both in public and academic debates owing to their seemingly high contribution toward the environmental pollution and potential impacts on biota and human health. Thus, finding the greener solution to this problem has got immense socio-economic and ecological significance. As a result, there is an increasing trend of using biodegradable or compostable polymeric materials. It has been demonstrated that the incorporation of plants-based reinforcing fillers into biodegradable polymers to construct composite materials have proved benefits in various applications. A great deal of research has been performed in order to develop novel sustainable polymeric materials having tailored physical properties over a wide range. As a consequence, by using bio-based fillers, new composite materials have been developed and commercialized. In this chapter, initially, the attention will be made on the review of different methods of extracting microcrystalline (MCC) and nanocrystalline (NCC) celluloses from different agro-based wastes using a series of thermo-mechanical and chemical processing routes. After a quick review on the structure-properties correlation of the micro- and nanocomposites of copolyesters, we shed light on biodegradable green composites with special emphasis on their morphological studies and correlations to deformation and degradation behavior. On the ground of the results obtained from our laboratory complemented by literature works, the structure-property correlations of copolyester-based composites have been discussed. Finally, the chapter concludes highlighting the new trends, major challenges, and opportunities relevant to the related research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807. https://doi.org/10.1126/science.297.5582.803

    Article  CAS  Google Scholar 

  2. Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S (2012) X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab 97:2378–2387. https://doi.org/10.1016/j.polymdegradstab.2012.07.028

  3. Malho JM, Laaksonen P, Walther A, Ikkala O, Linder MB (2012) Facile method for stiff, tough and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromol 13:1093–1099. https://doi.org/10.1021/bm2018189

  4. Cho MJ, Park BD (2011) Tensile and properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40. https://doi.org/10.1016/j.jiec.2010.10.006

    Article  CAS  Google Scholar 

  5. Frone AN, Panaitescu DM, Donescu D (2011) UPB Sci Bull, Ser B: Chem Mater Sci 73:133–152. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full20599.pdf

  6. Rajan KP, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2010) Extraction of bamboo microfibrils and development of biocomposites based on polyhydroxybutyrate and bamboo microfibrils. J Comp Mater 45:1325–1329. https://doi.org/10.1177/0021998310381543

  7. Lee SY, Mohan DJ, Kang IA, Doh GH, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: Effect of acid treatment and filler loading. Fibers Polym 10:77–82. https://doi.org/10.1007/s12221-009-0077-x

  8. William GE, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas: Clencia Technologia 7:159–178. https://doi.org/10.4067/s0718-221x2005000300002

  9. Morouco P, Biscaia S, Viana T, Franco M, Malca C, Mateus A, Moura C, Ferreira FC, Mitchell G, Alves NM (2016) Fabrication of poly(ɛ-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. BioMed Res Int Article ID 1596157:1–10. https://doi.org/10.1155/2016/1596157

  10. Ozkoc G, Kemaloglu S, Quaedflieg M (2010) Production of poly(lactic acid)/organoclay nanocomposites scaffolds by microcompounding and polymer/particle leaching. Polym Compos 31:674–683. https://doi.org/10.1002/pc.20846

  11. Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C32:1331–1351. https://doi.org/10.1016/j.msec.2012.04.005

  12. Rasyida A, Fukushima K, Yang MC (2017) Structure and properties of organically modified poly(butylene adipate-co-terephthalate) based nanocomposites. IOP Conf Ser Mater Sci Eng 223:012–023. https://doi.org/10.1088/1757-899x/223/1/012023

    Article  CAS  Google Scholar 

  13. Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J Polym Env 14:393–401. https://doi.org/10.1007/s10924-006-0033-4

    Article  CAS  Google Scholar 

  14. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) Cellulose nanocrystals: a potential nanofiller for food packaging applications—food additives and packaging. In: ACS symposium series, chap 17. American Chemical Society: Washington, DC, pp 197–239. https://doi.org/10.1021/bk-2014-1162.ch017

  15. Gopakumar DA, Pai AR, Pottathara YB, Pasquini D, Morais LCD, Luke M, Kalarikkal NK, Grohens Y, Thomas S (2018) Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl Mater Interfaces 10:20032–20043. https://doi.org/10.1021/acsami.8b04549

    Article  CAS  Google Scholar 

  16. Moustafa H, Kissi NE, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9:20132–20141. https://doi.org/10.1021/acsami.7b0555

    Article  CAS  Google Scholar 

  17. Cotana F, Brinchi L, Gelosia M, Coccia V, Petrozzi A (2012) Nanocrystalline cellulose from lignocelluloses biomass: applications and future prospects. In: 20th European biomass conference and exhibition, Italy, pp 1182–1194. https://doi.org/10.1016/j.carbpol.2013.01.033

  18. Grüneberger F, Künniger T, Zimmermann T, Arnold M (2014) Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films. J Mater Sci 49:6437–6448. https://doi.org/10.1007/s10853-014-8373-2

    Article  CAS  Google Scholar 

  19. Leung ACW, Lam E, Chong J, Hrapovic S, Luong JHT (2013) Reinforced plastics and aerogels by nanocrystalline cellulose. J Nanoparticles Res 15:1–24. https://doi.org/10.1007/s11051-013-1636-z

    Article  Google Scholar 

  20. LuY Tekinalp HL, Eberle CC, Peter W, Naskar AM, Ozcan S (2001) Nanocellulose in polymer composites and biomedical applications. Tappi J Nanocellulose 13:47–54

    Article  Google Scholar 

  21. Sgarioto M, Adhikari R, Gunatillake PA, Moore T, Malherbe F, Nagel MD, Patterson J (2014) Properties and in vitro evaluation of high modulus biodegradable polyurethanes for applications in cardiovascular stents. J Biomed Mater Res B Appl Biomater 102B:1711–1719. https://doi.org/10.1002/jbm.b.33137

  22. Dasaria A, Yub ZZ, Caic GP, Maic YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387. https://doi.org/10.1016/j.progpolymsci.2013.06.006

    Article  CAS  Google Scholar 

  23. Sjödin A, Carlsson H, Thuresson K, Sjölin S, Bergman A, Östman C (2001) Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ Sci Technol 35:448–454. https://doi.org/10.1021/es000077n

  24. Saba N, Jawaid M, Othman YA, Paridah MT (2015) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Const Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

  25. Su SK, Wu CS (2011) Polyester biocomposites from recycled natural fibers: characterization and biodegradability. J Appl Polym Sci 119:1211–1219. https://doi.org/10.1002/app.32808

    Article  CAS  Google Scholar 

  26. Chauhan YP, Sapkal RS, Sapkal VS, Zamre GS (2009) Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). Int J Chem Sci 7:681–688

    CAS  Google Scholar 

  27. Banerjee A, Chatterjee K, Madras G (2014) Enzymatic degradation of polymer: a brief review. Mater Sci Technol 30:567–573. https://doi.org/10.1179/1743284713y.0000000503

  28. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Polish J Environ Stud 19:255–266. http://yunus.hacettepe.edu.tr/~damlacetin/kmu407/index_dosyalar/2.%20makale.pdf

  29. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive a review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

  30. Palisikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2017) Biodegradation in soil of PLA/PBAT Blends compatibilized with chain extender. J Polym Environ 26:330–341. https://doi.org/10.1007/s10924-017-0951-3

    Article  CAS  Google Scholar 

  31. Mostafa HM, Sourell H, Blockisch FJ (2010) The mechanical properties of some bioplastics under different soil type for use as a biodegradable drip tubes. Agric Eng Int 12:12–21. http://cigrjournal.org/index.php/Ejounral/article/view/1497/1270

  32. Han YH, Han SO, Cho D, Kim HI (2008) Dynamic mechanical properties of natural fiber/polymer biocomposites: The effect of fiber treatment with electron beam. Macromol Res 16:253–260. https://doi.org/10.1007/bf03218861

  33. Chan CH, Chia CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterization of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources 8:785–794

    Article  Google Scholar 

  34. Vinayak DL, Guna VK, Madhavi D, Arpitha M, Reddy N (2017) Ricins communis plant residues as a source for natural cellulose fiber potentially exploitable in polymer composites. Ind Crops Prod 100:126–131. https://doi.org/10.1016/j.indcrop.2017.02.019

  35. Das M, Chakraborty D (2008) The effect of Alkalization and fiber loading on the mechanical properties of bamboo fiber composites, part 1: polyester resin matrix. J Appl Polym Sci 112:489–495. https://doi.org/10.1002/app.29342

  36. Adhikari R, Bhandari NL, Causin V, Le HH, Radusch HJ, Michler GH, Saiter JM (2012) Study of morphology, mechanical properties, and thermal behavior of green aliphatic-aromatic copolyester/bamboo flour composites. Polym Eng Sci 52:2296–2303. https://doi.org/10.1002/pen.23335

  37. Batalha LAR, Colodette JL, Gomide JL, Barbosa LCA, Maltha CRA, Gomes FJB (2012) Dissolving pulp producing from bamboo. Bioresources 7:640–651

    Google Scholar 

  38. Cherian BM, Leao AL, de Souza SF, Coata LMM, Olyveira GMd, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with fibres nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009

  39. Morais Teixeira E, Correa AC, Manzoli A, Leite FDL, Oliveira CRD, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. https://doi.org/10.1007/s10570-010-9403-0

    Article  CAS  Google Scholar 

  40. Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym Microbial Technol 52:20–25. https://doi.org/10.1016/j.enzmictec.2012.09.002

  41. Yu T, Li Y (2014) Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid). Composites: Part A 58:24–29. https://doi.org/10.1016/j.compositesa.2013.11.013

  42. Nagata M, Inaki K (2011) Biodegradable and photocurable multiblock copolymers with shape-memory properties from poly(ɛ-caprolactone) diol, poly(ethylene glycol) and 5-cinnamoyloxyisophthalic acid. J Appl Polym Sci 120:3556–3564. https://doi.org/10.1002/app.33531

  43. Giri J, Adhikari R (2013) A brief review on extraction of nanocellulose and its application. BIBECHANA 9:81–87. https://doi.org/10.3126/bibechana.v9i0.7179

  44. Sanjay MR, Arpitha GR, Naik LL, Gopalakrisha K, Yogesha B (2016) Applications of natural fibers and its composites: an overview. Sci Res 7:108–114. https://doi.org/10.4236/nr.2016.73011

  45. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y2890-2895

  46. Pelissari FM, Sobral PJDM, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432. https://doi.org/10.1007/s10570-013-0138-6

  47. Ibrahim NA, Hadithon KA, Abdan K (2010) Effect of fiber treatment on mechanical properties of kenaf-fiber-Ecoflex composites. J Reinf Plast Compos 29:2192–2198. https://doi.org/10.1177/0731684409347592

  48. Reddy JP, Rhim JW (2014) Isolation and characterization of cellulose nanocrystals from garlic skin. Mater Lett 129:20–23. https://doi.org/10.1016/j.matlet.2014.05.019

    Article  CAS  Google Scholar 

  49. Dai D, Fan M (2010) Characteristic and performance of elementary hemp fibre. Mater Sci Appl 1:336–342. https://doi.org/10.4236/msa.2010.16049

    Article  CAS  Google Scholar 

  50. Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8:1893–1908

    Article  Google Scholar 

  51. Cesar NR, Marcelo A, da-Silva P, Botaro VR, Menezes AJD (2015) Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization. Cellulose 22:449–460

    Google Scholar 

  52. Yan FY, Krishniah D, Rajin M, Bono A (2009) Cellulose extraction from Palm Kernel cake using liquid phase oxidation. J Eng Sci Technol 1:57–68

    Google Scholar 

  53. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterizations of solution cast cellulose nanofibre- reinforced poly(lactic acid). eXPRESSPolym Lett 4:26–31. https://doi.org/10.3144/expresspolymlett.2010.5

  54. Shaheen TI, Emam HE (2018) Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. Int J Biol Macromol 107:1599–1606. https://doi.org/10.1016/j.ijbiomac.2017.10.028

    Article  CAS  Google Scholar 

  55. Chen X, Kuhn E, Wang W, Park S, Flanegan K, Trass O, Tenlep L, Tao L, Tucker M (2013) Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresource Technol 147:401–408. https://doi.org/10.1016/j.biortech.2013.07.109

  56. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood. Ind Eng Chem Res 48:11211–11219. https://doi.org/10.1021/ie9011672

    Article  CAS  Google Scholar 

  57. Li J, Wei X, Wang Q, Chen J, Chang G, Su LKJ, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613. https://doi.org/10.1016/j.carbpol.2012.07.038

  58. Oksman K, Etang JA, Mathew A, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35:146–152. https://doi.org/10.1016/j.biombioe.2010.08.021

  59. Czaja W, Krystynowicz A, Bielecki S, Brownjr R (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151. https://doi.org/10.1016/j.biomaterials.2005.07.035

    Article  CAS  Google Scholar 

  60. Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (eds) (2005) Bacterial cellulose: biotechnology of polymer: from synthesis to patents. Munster, Germany. Wiley-VCH, Verlag GmbH pp 381–434

    Google Scholar 

  61. Iguchi M, Yamanaka S, Budhiono A (2000) Review bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  62. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinusstrain ATCC 53524. J Appl Microbio 107:576–583. https://doi.org/10.1111/j.1365-2672.2009.04226.x

    Article  CAS  Google Scholar 

  63. Michler GH (2008) Electron microscopy of polymers. Springer, Berlin. https://doi.org/10.1007/978-3-540-36352-1

  64. Thomas S, Chan CH, Pothen LA, Rajisha KR, Maria H (eds) (2013) Natural rubber materials. Blends and IPNs

    Google Scholar 

  65. Thomas S, Stephen R (eds) (2010) Rubber nanocomposites: preparation, properties, and applications. Springer Publisher, Heidelberg, Germany. ISBN 978-0-470-82345-3

    Google Scholar 

  66. Sawyer LC, Grubb DT, Meyers GF (eds) (2008) Polymer microscopy. Springer Publisher, Heidelberg, Germany. https://doi.org/10.1007/978-0-387-72628-1

  67. Guo Q (2016) Polymer morphology: principles, characterization, processing. Wiley. ISBN-13: 978-1118452158

    Google Scholar 

  68. Grellmann W, Langer B (eds) (2017) Deformation and fracture behaviour of polymer materials. Springer, Berlin. ISBN: 978-3-319-41879-7

    Google Scholar 

  69. Adhikari R, Michler GH (2009) Polymer nanocomposites characterization by microscopy. Polym Rev 49:141–180. https://doi.org/10.1080/15583720903048094

  70. Bandera D, Sapkota J, Josset S, Weder C, Tingaut P, Gao X, Foster EJ, Zimmermann T (2014) Influence of mechanical treatments in the properties of cellulose nanofibers isolated from microcrystalline cellulose. React Funct Polym 85:134–141. https://doi.org/10.1016/j.reactfunctpolym.2014.09.009

  71. Giri J, Lach R, Sapkota J, Susan MABH, Saiter JM, Henning S, Katiyar V, Adhikari R (2019) Structural and thermal characterization of different types of cellulosic fibers. BIBECHANA 16:177–186. https://doi.org/10.3126/bibechana.v16i0.21650

  72. He J, Tang Y, Wang SY (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran Polym J 16:807–818

    CAS  Google Scholar 

  73. Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos Part: A 35:377–383. https://doi.org/10.1016/j.compositesa.2003.09.017

  74. Bozzolz JJ, Lonnie D, Jones R (1992) Electron microscopy, principals and techniques for biologists, 2nd edn. Bartlett Publish

    Google Scholar 

  75. Yang J, Ye DY (2012) Liquid crystal of nanocellulose whiskers grafted with acrylamide. Chin Chem Lett 23:367–370

    Article  CAS  Google Scholar 

  76. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

  77. Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298. https://doi.org/10.1016/j.carbpol.2011.10.063

  78. Herrera MA, Mathew AP, Oksman K (2012) Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater Lett 71:28–31. https://doi.org/10.1016/j.matlet.2011.12.011

  79. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025. https://doi.org/10.1002/app.21779

    Article  CAS  Google Scholar 

  80. Maiti S, Ray D, Mitra D, Sengupta S, Kar T (2011) Structural changes of starch/polyvinyl alcohol biocomposite films reinforced with microcrystalline cellulose due to biodegradation in simulated aerobic compost environment. J Appl Polym Sci 122:2503–2511. https://doi.org/10.1002/app.34377

  81. Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131. https://doi.org/10.1021/ma034623j

    Article  CAS  Google Scholar 

  82. Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473. https://doi.org/10.1016/j.jiec.2013.05.003

  83. Pokhrel S, Lach R, Le HH, Wutzler A, Grellmann W, Radusch HJ, Dhakal RP, Esposito A, Henning S, Yadav PN, Saiter JM, Heinrich G, Adhikari R (2016) Fabrication and characterization of completely biodegradable copolyester-chitosan blends: I spectroscopic and thermal characterization. Macromol Symp 366:23–34. https://doi.org/10.1002/masy.201650043

    Article  CAS  Google Scholar 

  84. Giri J, Lach R, Le HH, Grellmann W, Susan MABH, Saiter JM, Henning S, Adhikari R (2019) Compostable composites of wheat stalk microcrystalline cellulose and Poly(butylenes adipate-co-terephathalate: structural, thermal and mechanical properties. Submitted

    Google Scholar 

  85. Giri J, Lach R, Grellmann W, Susan MABH, Saiter JM, Henning S, Katiyar V, Adhikari R (2019) Compostable composites of wheat stalk microcrystalline cellulose and Poly(butylene adipate-co-terephthalate): surface properties and degradation behaviour. J Appl Polym Sci, Submitted

    Google Scholar 

  86. Lee KY, Blaker JJ, Bismarch A (2009) Improving the properties of nanocellulose/polylactide composites by esterification of nanocelulose. Can it be done?

    Google Scholar 

  87. Kramer F, Klemm D, Schumann D, Heßler N, Wesarg F, Fried W, Stadermann D (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 244:136–148. https://doi.org/10.1002/masy.200651213

  88. Paula MPD, Larcerda TM, Frollini E (2008) Sisal cellulose acetates obtained from heterogeneous reaction. eXPRESS Polym Lett 2:423–428

    Google Scholar 

  89. Teeri TT, Brumer H, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25:299–306. https://doi.org/10.1016/j.tibtech.2007.05.002

  90. Demir H, Atikler U, Balkose D, Tihminlioglu F (2006) The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos A 37:447–456. https://doi.org/10.1016/j.compositesa.2005.05.036

  91. Beg MDH, Pickering KL (2008) Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos Part A: Appl Sci Manufact 39:1748–1755. https://doi.org/10.1016/j.compositesa.2008.08.003

    Article  CAS  Google Scholar 

  92. Beg MDH, Pickering KL (2008) Reprocessing of wood fibre reinforced polypropylene composites. Part II: hygrothermal ageing and its effects. Compos Part A: Appl Sci Manufact 39:1565–1571. https://doi.org/10.1016/j.compositesa.2008.06.002

    Article  CAS  Google Scholar 

  93. Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM (1995) Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of Kenaf fiber-polypropylene composites. Indus Eng Chem Res 34:1889–1896. https://doi.org/10.1021/ie00044a041

    Article  CAS  Google Scholar 

  94. Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci 69:329–338. https://doi.org/10.1002/(sici)1097-4628(19980711)69:2%3c329:aid-app14%3e3.0.co;2-r

    Article  CAS  Google Scholar 

  95. Nachtigall SMB, Cerveira GS, Rosa SML (2007) Newpolymeric-coupling agent for polypropylene/wood-flour composites. Polym Test 26:619–628. https://doi.org/10.1016/j.polymertesting.2007.03.00

    Article  CAS  Google Scholar 

  96. Smits V, Chevalier P, Deheunynck D, Miller S (2008) A new filler dispersion technology. Reinfor Plast 52:37–43. https://doi.org/10.1016/s0034-3617(08)70406-5

    Article  Google Scholar 

  97. Sanadi AR, Young RA, Clemons C, Rowell RM (1994) Recycled newspaper fibers as reinforcing fillers in thermoplastics: part i-analysis of tensile and impact properties in polypropylene. J Reinfor Plast Compos 13:54–67. https://doi.org/10.1177/073168449401300104

    Article  CAS  Google Scholar 

  98. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336. https://doi.org/10.1002/(sici)1097-4628(19960222)59:8%3c1329:aid-app17%3e3.0.co;2-0

    Article  CAS  Google Scholar 

  99. Martí-Ferrer F, Vilaplana F, Ribes-Greus A, Benedito-Borrás A, Sanz-Box C (2005) Flour rice husk as filler in block copolymer polypropylene: effect of different coupling agents. J Appl Polym Sci 99:1823–1831. https://doi.org/10.1002/app.22717

    Article  CAS  Google Scholar 

  100. Yang HS, Wolcott MP, Kim HS, Kim S, Kim HJ (2006) Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polym Test 25:668–676. https://doi.org/10.1016/j.polymertesting.2006.03.01

    Article  CAS  Google Scholar 

  101. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312. https://doi.org/10.1016/s0263-8223(03)00179-x

    Article  Google Scholar 

  102. Ichazo M, Albano C, González J, Perera R, Candal M (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214. https://doi.org/10.1016/s0263-8223(01)00089-7

    Article  Google Scholar 

  103. Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67:453–461. https://doi.org/10.1016/j.compscitech.2006.08.025

    Article  CAS  Google Scholar 

  104. Satapathy A, Patnaik A, Pradhan MK (2009) A study on processing, characterization and erosion behavior of fish (Labeo rohita) scale filled epoxy matrix composites. Mater Des 30:2359–2371. https://doi.org/10.1016/j.matdes.2008.10.033

    Article  CAS  Google Scholar 

  105. Adhikari R, Bhandari NL, Le HH, Henning S, Radusch HJ, Michler GH, Garda MR, Saiter JM (2012) Thermal, mechanical and morphological behavior of poly(propylene)/wood flour composites. Macromol Symp 315:24–29. https://doi.org/10.1002/masy.201250503

    Article  CAS  Google Scholar 

  106. Pal AK, Katiyar V (2017) Thermal degradation behavior of nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films. Int J Biol Macromol 10:1267–1279. https://doi.org/10.1016/j.ijbiomac.2016.11.024

  107. Kitagawa K, Ishiaku US, Mizoguchi M, Hamada H (2005) Bamboo-based ecocomposites and their potential applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers biopolymers, and biocomposites. CRC Press, Boca Raton, USA

    Google Scholar 

  108. Lee SH, Ohkita T, Kitagawa K (2004) Eco-composite from poly(lactic acid) and bamboo fiber. Holzforschung 58. https://doi.org/10.1515/hf.2004.080

  109. Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Euro Polym J 97:356–365. https://doi.org/10.1016/j.eurpolymj.2017.10.026

  110. Pereda M, Amica G, Racz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83. https://doi.org/10.1016/j.jfoodeng.2010.10.001

  111. Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechan Mater 40:446–452. https://doi.org/10.1016/j.mechmat.2007.10.006

    Article  Google Scholar 

  112. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B: Eng 43:2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  113. Novotny C, Erbanova P, Sezimova, H, Malchova K, Rybkova Z, Malinova L, Prokopova I, Brozek J (2015) Biodegradation of aromatic-aliphatic copolyesters and polyesteramides by esterase activity-producing microorganisms. Int Biodeter Biodegrad 97:25–30. https://doi.org/10.1016/j.ibiod.2014.10.010

  114. Siotto M, Zoia L, Tosin M, Innocenti FD, Orlandi M, Mezzanotte V (2013) Monitoring biodegradation of poly(butylenes sebacate) by gel permeation chromatography, 1H-NMR and 31P-NMR techniques. J Environ Manage 116:27–35. https://doi.org/10.1016/j.jenvman.2012.11.043

  115. Sharma S, Singh I, Virdi JS (2003) Apotential Aspergillus species for biodegradation of polymeric materials. Curr Sci 84:1399–1402

    Google Scholar 

  116. Esmaeli A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLOS One 8:1–10. https://doi.org/10.1371/journal.pone.0071720

  117. Carrasco GC, Miettinen A, Hendriks CLL, Gamstedt EK, Kataja M (2011) Structural characterization of Kraft pulp fibres and their nanofibrillated materials for biodegradable composite applications. In. John C (ed) Nanocomposites and polymers with analytical methods, chap 10, pp 243–260. ISBN: 978-953-307-352-1 https://doi.org/10.5772/21580

  118. Saxena M, Morchhale RK, Asokan P, Prasad BK (2008) Plant Fiber- Industrial waste reinforced polymer composites as a potential wood substitute material. J Compos Mater 42:367–384. https://doi.org/10.1177/0021998307087014

    Article  CAS  Google Scholar 

  119. Cho MJ, Park BD, Kadla JF (2012) Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. Mokchae Konghak 40:71–77. https://doi.org/10.5658/wood.2012.40.2.71

  120. Wu CS (2012) Characterization of cellulose acetate-reinforced aliphatic-aromatic copolyester composites. Carbohydr Polym 87:1249–1256. https://doi.org/10.1016/j.carbpol.2011.09.009

  121. Faguaga E, Perez CJ, Villarreal N, Rodriguez ES, Alvarez V (2012) Effect of water absorption on the dynamic mechanical properties of composites used for windmill blades. Mater Des 36:609–616. https://doi.org/10.1016/j.matdes.2011.11.059

  122. Li L, Ding S, Zhou C (2003) Preparation and degradation of PLA/chitosan composite materials. J Appl Polym Sci 91:274–277. https://doi.org/10.1002/app.12954

    Article  CAS  Google Scholar 

  123. Shi B, Shlepr M, Palfery D (2011) Effect of blend composition and structure on biodegradation of starch/ Ecoflex-filled polyethylene films. J Appl Polym Sci 120:1808–1816. https://doi.org/10.1002/app.33309

  124. Chieng BW, Ibrahim NA, Yunus WMZW (2010) Effect of organo-modified montmorillonite on poly(butylenes succinate)/poly(butylenes adipate-co-terepthalate) nanocomposites. eXPRESS Polym Lett 4:404–414. https://doi.org/10.3144/expresspolymlett.2010.51

  125. Panaitescu DM, Frone AN, Ghiurea M, Spataru CI, Radovici C, Iorga MD (2011) Properties of polymer composites with cellulose microfibrils. In: Brahim A (ed) Advances in composites materials-ecodesign and analysis, vol 5, pp 103–122. ISBN: 978-953-307-150-3. https://doi.org/10.5772/14682

  126. Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol 66:1941–1952. https://doi.org/10.1016/j.compscitech.2005.12.028

  127. Yang Y, Lan J, Li X (2006) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380:378–383. https://doi.org/10.1016/j.msea.2004.03.073

  128. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

  129. Birinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

  130. Dhakal HN, Zhang ZY, Bennett N (2012) Influence of fibre treatment and glass fibrehybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites. Compos Part B Eng 43:2757–2761. https://doi.org/10.1016/j.compositesb.2012.04.036

    Article  CAS  Google Scholar 

  131. Spiridon I, Darie RN, Kangas H (2016) Influence of fiber modifications on PLA/fiber composites: behavior to accelerated weathering. Compos Part B Eng 92:19–27. https://doi.org/10.1016/j.compositesb.2016.02.032

    Article  CAS  Google Scholar 

  132. Dai X, Xiong Z, Na H, Zhu J (2014) How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid composites? Compos Sci Technol 90:9–15. https://doi.org/10.1016/j.compscitech.2013.10.009

  133. Michler GH, Balta-Calleja FJ (2012) Nano- and micromechanics of polymers: structure modification and improvement of properties. Hanser Verlag Munich. ISBN-13: 978-1569904602, ISBN-10: 156990460X

    Google Scholar 

  134. Hassan MM, Wagner MH, Zaman HU, Khan MA (2011) Study on the performance of hybrid Jute/Betel nut fiber reinforced polypropylene composites. J Adh Sci Technol 25:615–626. https://doi.org/10.1163/016942410x525858

    Article  CAS  Google Scholar 

  135. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217. https://doi.org/10.1016/j.compscitech.2009.02.024

    Article  CAS  Google Scholar 

  136. Tesfaye M, Patwa R, Dhar P, Katiyar V (2017) Nanosilk-grafted poly(lactic acid) films: Influence of cross-linking on rheology and thermal stability. ACS Omega 2:7071–7084. https://doi.org/10.1021/acsomega.7b01005

    Article  CAS  Google Scholar 

  137. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008

  138. Liu Y, Li Y, Chen H, Yang G, Zheng X, Zhou S (2014) Water-induced shape-memory poly(d,l-lactide)/microcrystalline cellulose composites. Carbohydr Polym 104:101–108. https://doi.org/10.1016/j.carbpol.2014.01.031

  139. Itry RA, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028

  140. Dvorackova M, Stloukal P, Koutny M, Gregovska M (2011) Biodegradability of aliphatic-aromatic copolyester in aqueous anaerobic and aerobic environments. In: Recent advances in environment, energy system and naval science—Proceedings of the 4th international conference on environmental and geological science and engineering. TBU Publications, pp 141–146. ISBN: 9781618040329

    Google Scholar 

  141. Giri J (2019) Wheat stalk micro- and nanocellulose based degradable polymer composites: morphology, mechanical and degradation behaviour. Ph.D. thesis submitted to Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal

    Google Scholar 

Download references

Acknowledgements

JG thanks the Indian National Science Academy (INSA) and Nepal Academy of Science and Technology (NAST) for providing the fellowship to visit IIT Guwahati and for providing PhD Research Fellowship, respectively. She further acknowledges the German Science Foundation (DFG) for providing her financial support for research stays in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar Adhikari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giri, J., Adhikari, R. (2020). Biodegradable Copolyester-Based Natural Fibers–Polymer Composites: Morphological, Mechanical, and Degradation Behavior. In: Katiyar, V., Kumar, A., Mulchandani, N. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1251-3_13

Download citation

Publish with us

Policies and ethics