Skip to main content

Pharmacogenomics of Methotrexate-Induced Toxicity in Children

  • Chapter
  • First Online:
'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine

Abstract

Methotrexate (MTX) is an efficient chemotherapeutic drug used in the treatment of several disorders in which there is a rapid cellular growth like cancer. MTX and folic acid have a chemically alike structure. MTX shows its chemotherapeutic effects by competing with folic acid in cancerous cells, which results in the reduction of folic acid in cells, and ultimately it causes cell death. But a drawback of MTX is that it causes different side effects by competing with folic acid in normal cells. The action of MTX on folate metabolism involves a complex pattern that includes several metabolizing enzymes and several transporters whose expression and/or function have been suggested to be changed by genetic polymorphisms. The main genes involved in showing important polymorphism are dihydrofolate reductase (DHFR), methotrexate polyglutamates (MTX-PG), thymidylate synthase (TS), solute carrier 19A1(SLC19A1), ATP-binding cassette C1 and two transporters (ABCC1, ABCC2), breast cancer resistance protein (BCRP), methylenetetrahydrofolate reductase (MTHFR), and many others too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagner N, Joerger M (2010) Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res 2:293–301. https://doi.org/10.2147/CMR.S10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galivan J (1980) Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol Pharmacol 17:105–110

    CAS  PubMed  Google Scholar 

  3. Szeto DW, Yung-Chi C, Rosowsky A et al (1979) Human thymidylate synthetase—III: effects of methotrexate and folate analogs. Biochem Pharmacol 28:2633–2637. https://doi.org/10.1016/0006-2952(79)90039-X

    Article  CAS  PubMed  Google Scholar 

  4. Visentin M, Zhao R, Goldman ID (2012) The antifolates. Hematol Oncol Clin North Am 26:629–648, ix. https://doi.org/10.1016/j.hoc.2012.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asselin BL, Devidas M, Wang C et al (2011) Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood 118:874–883. https://doi.org/10.1182/blood-2010-06-292615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colleoni M, Cole BF, Viale G et al (2010) Classical cyclophosphamide, methotrexate, and fluorouracil chemotherapy is more effective in triple-negative, node-negative breast cancer: results from two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Clin Oncol 28:2966–2973. https://doi.org/10.1200/JCO.2009.25.9549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gennari A, Sormani MP, Pronzato P et al (2008) HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst 100:14–20. https://doi.org/10.1093/jnci/djm252

    Article  CAS  PubMed  Google Scholar 

  8. Jaffe N (2009) Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res 152:239–262. https://doi.org/10.1007/978-1-4419-0284-9_12

    Article  PubMed  Google Scholar 

  9. Matloub Y, Bostrom BC, Hunger SP et al (2011) Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 118:243–251. https://doi.org/10.1182/blood-2010-12-322909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alghamdi K, Khurrum H (2013) Methotrexate for the treatment of generalized vitiligo. Saudi Pharm J 21:423–424. https://doi.org/10.1016/j.jsps.2012.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dell’anna ML, Picardo M (2006) A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res 19:406–411. https://doi.org/10.1111/j.1600-0749.2006.00333.x

    Article  PubMed  Google Scholar 

  12. Peiró Cadahía J, Bondebjerg J, Hansen CA et al (2018) Synthesis and evaluation of hydrogen peroxide sensitive prodrugs of methotrexate and aminopterin for the treatment of rheumatoid arthritis. J Med Chem 61:3503–3515. https://doi.org/10.1021/acs.jmedchem.7b01775

    Article  CAS  PubMed  Google Scholar 

  13. Mould DR, Hutson PR (2017) Critical considerations in anticancer drug development and dosing strategies: the past, present, and future. J Clin Pharmacol 57(Suppl 10):S116–S128. https://doi.org/10.1002/jcph.983

    Article  CAS  PubMed  Google Scholar 

  14. Chabner BA, Allegra CJ, Curt GA et al (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76:907–912

    Article  CAS  Google Scholar 

  15. Krajinovic M, Moghrabi A (2004) Pharmacogenetics of methotrexate. Pharmacogenomics 5:819–834. https://doi.org/10.1517/14622416.5.7.819

    Article  CAS  PubMed  Google Scholar 

  16. Beresford MW, Baildam EM (2009) New advances in the management of juvenile idiopathic arthritis–1: non-biological therapy. Arch Dis Child Educ Pract Ed 94:144–150. https://doi.org/10.1136/adc.2008.144576

    Article  CAS  PubMed  Google Scholar 

  17. Fuchs N, Bielack SS, Epler D et al (1998) Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group’s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann Oncol 9:893–899. https://doi.org/10.1023/a:1008391103132

    Article  CAS  PubMed  Google Scholar 

  18. Guardiola E, Peyrade F, Chaigneau L et al (2004) Results of a randomised phase II study comparing docetaxel with methotrexate in patients with recurrent head and neck cancer. Eur J Cancer 40:2071–2076. https://doi.org/10.1016/j.ejca.2004.05.019

    Article  CAS  PubMed  Google Scholar 

  19. Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413. https://doi.org/10.1016/S0140-6736(98)11058-9

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Hu X, Xu L (2012) Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol 33:1445–1454. https://doi.org/10.1007/s13277-012-0395-2

    Article  CAS  PubMed  Google Scholar 

  21. Xie L, Guo W, Yang Y et al (2017) More severe toxicity of genetic polymorphisms on MTHFR activity in osteosarcoma patients treated with high-dose methotrexate. Oncotarget 9:11465–11476. https://doi.org/10.18632/oncotarget.23222

    Article  PubMed  PubMed Central  Google Scholar 

  22. Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C et al (2017) MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med 10:69–78. https://doi.org/10.2147/PGPM.S107047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moscow JA, Gong M, He R et al (1995) Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 55:3790–3794

    CAS  PubMed  Google Scholar 

  24. Strand V, Cohen S, Schiff M, Leflunomide Rheumatoid Arthritis Investigators Group et al (1999) Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Arch Intern Med 159:2542–2550. https://doi.org/10.1001/archinte.159.21.2542

    Article  CAS  PubMed  Google Scholar 

  25. Fowler B (2001) The folate cycle and disease in humans. Kidney Int 59:221–229. https://doi.org/10.1046/j.1523-1755.2001.07851.x

    Article  Google Scholar 

  26. Erdilyi DJ, Kamory E, Csokay B et al (2008) Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J 8:321–327

    Article  CAS  Google Scholar 

  27. Imanishi H, Okamura N, Yagi M et al (2007) Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet 52:166–171

    Article  CAS  Google Scholar 

  28. Kishi S, Cheng C, French D et al (2007) Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 109:4151–4157. https://doi.org/10.1182/blood-2006-10-054528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimasaki N, Mori T, Samejima H et al (2006) Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 28:64–68. https://doi.org/10.1097/01.mph.0000198269.61948.90

    Article  CAS  PubMed  Google Scholar 

  30. Mahadeo KM, Dhall G, Panigrahy A et al (2010) Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatr Hematol Oncol 27:46–52. https://doi.org/10.3109/08880010903341904

    Article  CAS  PubMed  Google Scholar 

  31. Strunk T, Gottschalk S, Goepel W et al (2003) Subacute leukoencephalopathy after low-dose intrathecal methotrexate in an adolescent heterozygous for the MTHFR C677T polymorphism. Med Pediatr Oncol 40:48–50. https://doi.org/10.1002/mpo.10192

    Article  PubMed  Google Scholar 

  32. Vagace JM, Caceres-Marzal C, Jimenez M et al (2011) Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am J Hematol 86:98–101. https://doi.org/10.1002/ajh.21897

    Article  CAS  PubMed  Google Scholar 

  33. Vagace JM, de la Maya MD, Caceres-Marzal C et al (2012) Central nervous system chemotoxicity during treatment of pediatric acute lymphoblastic leukemia/lymphoma. Crit Rev Oncol Hematol 84:274–286. https://doi.org/10.1016/j.critrevonc.2012.04.003

    Article  PubMed  Google Scholar 

  34. Kishi S, Griener J, Cheng C, Das S, Cook EH, Pei D et al (2003) Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 21:3084–3091

    Article  CAS  Google Scholar 

  35. Kotnik BF, Jazbec J, Grabar PB et al (2017) Association between SLC19A1 gene polymorphism and high dose methotrexate toxicity in childhood acute lymphoblastic leukaemia and non-Hodgkin malignant lymphoma: introducing a haplotype based approach. Radiol Oncol 51:455–462. https://doi.org/10.1515/raon-2017-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lopez-Lopez E, Ballesteros J, Piñan MA et al (2013) Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics 23:53–61. https://doi.org/10.1097/FPC.0b013e32835c3b24

    Article  CAS  PubMed  Google Scholar 

  37. Bohanec Grabar P, Leandro-García LJ, Inglada-Pérez L et al (2012) Genetic variation in the SLC19A1 gene and methotrexate toxicity in rheumatoid arthritis patients. Pharmacogenomics 13:1583–1594. https://doi.org/10.2217/pgs.12.150

    Article  CAS  PubMed  Google Scholar 

  38. Romão VC, Lima A, Bernardes M et al (2014) Three decades of low-dose methotrexate in rheumatoid arthritis: can we predict toxicity? Immunol Res 60:289–310. https://doi.org/10.1007/s12026-014-8564-6

    Article  CAS  PubMed  Google Scholar 

  39. D’Angelo V, Ramaglia M, Iannotta A et al (2011) Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol 68:1339–1346. https://doi.org/10.1007/s00280-011-1665-1

    Article  CAS  PubMed  Google Scholar 

  40. Kantar M, Kosova B, Cetingul N et al (2009) Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 50:912–917. https://doi.org/10.1080/10428190902893819

    Article  CAS  PubMed  Google Scholar 

  41. Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F et al (2006) Methylenetetrahydrofolate reductase C677T polymorphism: association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in Greek patients. Pediatr Blood Cancer 47:147–151. https://doi.org/10.1002/pbc.20574

    Article  PubMed  Google Scholar 

  42. Huang L, Tissing WJE, de Jonge R et al (2008) Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia 22:1798–1800. https://doi.org/10.1038/leu.2008.66

    Article  CAS  PubMed  Google Scholar 

  43. Ferrara G, Mastrangelo G, Barone P et al (2018) Methotrexate in juvenile idiopathic arthritis: advice and recommendations from the MARAJIA expert consensus meeting. Pediatr Rheumatol 16:46. https://doi.org/10.1186/s12969-018-0255-8

    Article  Google Scholar 

  44. Giannini EH, Brewer EJ, Kuzmina N et al (1992) Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.-U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children’s Study Group. N Engl J Med 326:1043–1049. https://doi.org/10.1056/NEJM199204163261602

    Article  CAS  PubMed  Google Scholar 

  45. Céspedes-Cruz A, Gutiérrez-Suárez R, Pistorio A et al (2008) Methotrexate improves the health-related quality of life of children with juvenile idiopathic arthritis. Ann Rheum Dis 67:309–314. https://doi.org/10.1136/ard.2007.075895

    Article  CAS  PubMed  Google Scholar 

  46. Braun J, Rau R (2009) An update on methotrexate. Curr Opin Rheumatol 21:216–223. https://doi.org/10.1097/BOR.0b013e328329c79d

    Article  CAS  PubMed  Google Scholar 

  47. Hashkes PJ, Laxer RM (2006) Update on the medical treatment of juvenile idiopathic arthritis. Curr Rheumatol Rep 8:450–458. https://doi.org/10.1007/s11926-006-0041-3

    Article  CAS  PubMed  Google Scholar 

  48. Shea B, Swinden MV, Tanjong Ghogomu E, et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst Rev. 2013;CD000951. https://doi.org/10.1002/14651858.CD000951.pub2

  49. Van Ede AE, Laan RF, Rood MJ et al (2001) Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 44:1515–1524. https://doi.org/10.1002/1529-0131(200107)44:7<1515::AID-ART273>3.0.CO;2-7

    Article  PubMed  Google Scholar 

  50. Moncrieffe H, Hinks A, Ursu S et al (2010) Generation of novel pharmacogenomic candidates in the response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype. Pharmacogenet Genomics 20:665–676. https://doi.org/10.1097/FPC.0b013e32833f2cd0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mulligan K, Kassoumeri L, Etheridge A et al (2013) Mothers’ reports of the difficulties that their children experience in taking methotrexate for Juvenile Idiopathic Arthritis and how these impact on quality of life. Pediatr Rheumatol 11:23. https://doi.org/10.1186/1546-0096-11-23

    Article  Google Scholar 

  52. Ghodke-Puranik Y, Puranik AS, Shintre P et al (2015) Folate metabolic pathway single nucleotide polymorphisms: a predictive pharmacogenetic marker of methotrexate response in Indian (Asian) patients with rheumatoid arthritis. Pharmacogenomics 16:2019–2034. https://doi.org/10.2217/pgs.15.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cao M, Guo M, Wu D-Q, Meng L (2018) Pharmacogenomics of methotrexate: current status and future outlook. Curr Drug Metab 19:1182–1187. https://doi.org/10.2174/1389200219666171227201047

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Salahuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, A., Ghaffar, M., Salahuddin, H. (2020). Pharmacogenomics of Methotrexate-Induced Toxicity in Children. In: Masood, N., Shakil Malik, S. (eds) 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-1067-0_17

Download citation

Publish with us

Policies and ethics