Skip to main content
Log in

Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Folate-metabolizing single-nucleotide polymorphisms (SNPs) are emerging as important pharmacogenetic prognostic determinants of the response to chemotherapy. With high doses of methotrexate (MTX) in the consolidation phase, methylenetetrahydrofolate reductase (MTHFR) polymorphisms could be potential modulators of the therapeutic response to antifolate chemotherapeutics in identifying a possible correlation with the outcome. This study aims to analyse the potential role of the MTHFR C677T and A1298C genetic variants in modulating the clinical toxicity and efficacy of high doses of MTX in a cohort of paediatric ALL patients (n = 151) treated with AIEOP protocols.

Methods

This work includes DNA extraction by slides and RFLP-PCR.

Results

The first observation relative to early toxicities (haematological and non-haematological), after the first doses of MTX in all protocols, was an association between the 677T and 1298C carriers and global toxicity. We found that in the 2 g/m2 MTX group, patients harbouring 677TT homozygously exhibited a substantial 12-fold risk of developing toxicity. In this study, we demonstrate that the MTHFR 677TT variant is associated with an increased risk of relapse when compared to other genotypes. The Kaplan–Meier analysis showed that the 677TT variant had a lower 7-year DFS(disease-free survival) probability compared to the 677C carrier genotype (log-rank test P = 0.003) and OS (overall survival) and also confirms the lower probability of survival for patients with the 677TT variant (log-rank test, P = 0.006).

Conclusions

Our study provides further evidence of the critical role played by folate pathway enzymes in the outcome of ALL, possibly through the interference of MTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yong WP, Innocenti F, Ratain MJ (2006) The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol 62:35–46

    Article  PubMed  CAS  Google Scholar 

  2. Chiusolo P, Reddiconto G, Casorelli I et al (2002) Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Annal Oncol 13:1915–1918

    Article  CAS  Google Scholar 

  3. Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220

    Article  PubMed  CAS  Google Scholar 

  4. Calvert H (1999) An overview of folate metabolism: features relevant to the action and toxicities of antifolate anticancer agents. Semin Oncol 26:3–10

    PubMed  CAS  Google Scholar 

  5. Narayanan S, McConnell J, Little J, Sharp L, Piyathilake C, Powers H, Basten G, Duthie S (2004) Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (Strand Breaks, Misincorporated uracil, and DNA Methylation Status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev 13:1436–1443

    PubMed  CAS  Google Scholar 

  6. Kim HN, Kim YK, Lee IK, Yang DH, Lee JJ, Shin MH, Park KS, Choi JS, Park MR, Jo DY, Won JH, Kwak JY, Kim HJ (2009) Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res 33(1):82–87

    Article  PubMed  CAS  Google Scholar 

  7. Bottiger AK, Hurtig-Wennlof A, Sjostrom M, Yngve A, Nilsson TK (2007) Association of total plasma homocysteine with methylenetetrahydrofolate reductase genotypes 677C > T, 1298A > C, and 1793G > A and the corresponding haplotypes in Swedish children and adolescents. Int J Mol Med 19:659–665

    PubMed  Google Scholar 

  8. Toffoli G, Russo A, Innocenti F et al (2003) Effect of methylenetetrahydrofolate reductase 677C ≥ T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int J Cancer 103:294–299

    Article  PubMed  CAS  Google Scholar 

  9. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in methylentetrahydofolaten reductase (MTHFR) associated with decreased enzyme activity. Mole Gene Metabol 64:169–172

    Article  CAS  Google Scholar 

  10. Rosenblatt DS (2001) Methylenetetrahydrofolate reductase. Clin Invest Med 24:56–59

    PubMed  CAS  Google Scholar 

  11. Kremer JM (2006) Methotrexate pharmacogenomics. Ann Rheum Dis 65:1121–1123

    Article  PubMed  CAS  Google Scholar 

  12. Imanishi H, Okamura N, Yagi M et al (2007) Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet 52:166–171

    Article  PubMed  CAS  Google Scholar 

  13. Costea I, Moghrabi A, Laverdiere C, Graziani A, Krajinovic M (2006) Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica 91(8):1113–1116

    PubMed  CAS  Google Scholar 

  14. Pui CH, Relling MV, Evans WE (2002) Role of pharmacogenomics and pharmacodynamics in the treatment of acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 15:741–756

    Article  PubMed  CAS  Google Scholar 

  15. Chiusolo P, Reddiconto G, Farina G et al (2007) MTHFR polymorphisms: influence on outcome and toxicity in acute Lymphoblastic leukemia patients. Leuk Res 31:1669–1674

    Article  PubMed  CAS  Google Scholar 

  16. Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghrabi A (2004) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics 4:66–72

    Article  CAS  Google Scholar 

  17. Taub JW, Matherly LH, Ravindranath Y et al (2002) Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia 16:764–765

    Article  PubMed  CAS  Google Scholar 

  18. Ongaro A, De Mattei M, Della Porta M, Rigolin G, Ambrosio C, Di Raimondo F, Pellato A, Masieri F, Caruso A, Catozzi L, Gemmati D (2009) Gene polymorfisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate- related toxicity and survival. Haematologica 94(10):1391–1398

    Article  PubMed  CAS  Google Scholar 

  19. Aplenc R, Thompson J, Han P et al (2005) Methylenetetrahydrofolate reductase polymorphisms and therapy response in paediatric acute lymphoblastic leukemia. Cancer Res 65(6):2487–2582

    Article  Google Scholar 

  20. De Mattia E, Toffoli G (2009) G C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy. Eu J Cancer 60:1–19

    Google Scholar 

  21. Masera G, Conter V, Rizzari M et al (1999) AIEOP non-B ALL trials. J Ped Haem Onc 6:101

    Google Scholar 

  22. Pizzo AP, Poplack DG (2006) Principles and practice of pediatric oncology. Lippincot-Williams and Wilkins, Philadelphia

    Google Scholar 

  23. Bennet J, Catovsky D, Daniel MT, Flandring G, Galton DAG, Gralnick HR, Sultanj C (1976) French-American-British (FAB) cooperative group proposals for the classification of acute leukaemia’s. Br J of Haematol 33:451

    Article  Google Scholar 

  24. Bennet JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1981) The morphological classification of acute lymphoblastic leukemia: concordance among observers and clinical correlation. Br J of Haematol 9(6):1012

    Google Scholar 

  25. Borowitz M, Schuster J, Land V et al (1999) Myeloid—antigen expression in childhood acute lymphoblastic leukemia. N Eng J Med 1325:1378–1382

    Google Scholar 

  26. World Health Organization (WHO) an book For Reporting Results of Cancer Treatment WHO (1979) Offset publication no. 48. World Health Organization, Geneva

    Google Scholar 

  27. Aplenc R (2002) Differential bone marrow aspirate DNA yields from commercial extraction kits. Leukemia 16:1865–1866

    Article  PubMed  CAS  Google Scholar 

  28. Boyle E, Steinbuchn M, Tekautz T, Gutman J, Robinson J, Perentesis J (1998) Accuracy of DNA amplification from archival haematological slides for use in genetic biomarker studies. Cancer Epidemiol 7:1127–1131

    CAS  Google Scholar 

  29. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  30. Refsum H, Wesenbrg F, Ueland PM (1991) Plasma homocysteine in children with acute lymphoblastic leukemia: changes during a chemotherapeutic regimen including methotrexate. Cancer Res 51:828–835

    PubMed  CAS  Google Scholar 

  31. Van Ede AE, Laan RF, Blom HJ, Boers GH, Haagsma CJ, Thomas CM et al (2002) Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology 41:658–665

    Article  PubMed  Google Scholar 

  32. Van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA et al (2001) The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum 44:2525–2530

    Article  PubMed  Google Scholar 

  33. Shimasaki N, Mori T, Torii C, Sato R, Shimada H, Tanigawara Y, Kosaki K, Takahashi T (2008) Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 30(5):347–352

    Article  PubMed  CAS  Google Scholar 

  34. Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S, Udomsubpayakul U, Sirachainan N, Thithapandha A, Hongeng S (2007) Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukaemia. Ann Hematol 86(8):609–611 (Epub 2007 Feb 24)

    Article  PubMed  Google Scholar 

  35. Kantar M, Kosova B, Cetingul N, Gumus S, Toroslu E, Zafer N, Topcuoglu N, Aksoylar S, Cinar M, Tetik A, Eroglu Z (2009) Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 50(6):912–917

    Article  PubMed  CAS  Google Scholar 

  36. Ongaro A, De Mattei M (2008) Folate-pathway gene variants in cancer: haematological malignancies. Transworld Research Network Editor Donato Gemmati, Kerala, pp 51–94

    Google Scholar 

Download references

Acknowledgments

The work was supported by Luciano Gaudio, Professor of Genetics Dept Biological Sciences, University of Naples ‘Federico II’ Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia D’Angelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angelo, V., Ramaglia, M., Iannotta, A. et al. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol 68, 1339–1346 (2011). https://doi.org/10.1007/s00280-011-1665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1665-1

Keywords

Navigation