Skip to main content

Sun Gravity-Assist to Trans-Lunar Injection Orbits

  • Conference paper
  • First Online:
Advances in Fluid Mechanics and Solid Mechanics

Abstract

Solar gravity propelled highly elliptical resident Earth orbits have been utilized to improve lunar mission performance. A regularized orbit propagator has been used to perform linear search for initial conditions that produce energy-saving pre-trans-lunar injection exo-atmospheric highly elliptical orbits. Additional propellant mass margin or smaller piggyback payloads to the Moon/high altitude orbits may be enabled by such transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma RK, Bandyopadhyay P, Adimurthy V (2004) Consideration of lifetime limitation for spent stages in GTO. Adv Space Res 34(5):1227–1232. https://doi.org/10.1016/j.asr.2003.10.044

    Article  Google Scholar 

  2. Wang Y, Gurfil P (2016) Dynamical modeling and lifetime analysis of geostationary transfer orbits. Acta Astronaut 128:262–276. https://doi.org/10.1016/j.actaastro.2016.06.050

    Article  Google Scholar 

  3. Wang Y, Gurfil P (2017) The role of solar apsidal resonance in the evolution of geostationary transfer orbits. Adv Space Res 59(8):2101–2116. https://doi.org/10.1016/j.asr.2017.01.038

    Article  Google Scholar 

  4. Koon WS, Lo MW, Marsden JE, Ross SD (2001) Low energy transfer to the Moon. Celest Mech Dyn Astron 81(1):63–73. https://doi.org/10.1023/A:1013359120468

    Article  MathSciNet  MATH  Google Scholar 

  5. Hatch SJ, Roncoli RB, Sweetser TH (2010) GRAIL trajectory design: lunar orbit insertion through science. In: AIAA/AAS astrodynamics specialist conference, Toronto, Canada

    Google Scholar 

  6. Adimurthy V, Ramanan RV, Tandon SR, Ravikumar C (2005) Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm. J Earth Syst Sci 114(6):711–716. https://doi.org/10.1007/BF02715954

    Article  Google Scholar 

  7. Ramanan RV, Adimurthy V (2006) Precise lunar gravity assist transfers to geostationary orbits. J Guid Control Dyn 29(2):500–502. https://doi.org/10.2514/1.17469

    Article  Google Scholar 

  8. Kustaanheimo P, Stiefel EL (1965) Perturbation theory of Kepler motion based on Spinor regularization. J Reine Angew Math 218:204–219. https://doi.org/10.1515/crll.1965.218.204

    Article  MathSciNet  MATH  Google Scholar 

  9. Stiefel EL, Scheifele G (1971) Linear and regular celestial mechanics. Springer, Berlin

    Book  Google Scholar 

  10. Sundman KF (1913) Mémoire sur le problème des trois corps. Acta Math 36(1):105–179. https://doi.org/10.1007/BF02422379

    Article  MathSciNet  MATH  Google Scholar 

  11. Blanco-Muriel M, Alarcón-Padilla DC, López-Moratalla T, Lara-Coira M (2001) Computing the solar vector. Sol Energy 70(5):431–441. https://doi.org/10.1016/S0038-092X(00)00156-0

    Article  Google Scholar 

  12. Simpson DG (1999) An alternative lunar ephemeris model for on-board flight software use. In: NASA/GSFC flight mechanics symposium, pp 175–184

    Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to Padma Shri Dr. V. Adimurthy for the fruitful discussion. We extend our thanks to the IBM Centre of Excellence for Big Data Software at Karunya Institute of Technology and Sciences. The first author acknowledges Dr. Moriba Jah and the Texas Advanced Computing Centre at UTAustin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harishkumar Sellamuthu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sellamuthu, H., Arumugam, S., Sharma, R.K. (2020). Sun Gravity-Assist to Trans-Lunar Injection Orbits. In: Maity, D., Siddheshwar, P., Saha, S. (eds) Advances in Fluid Mechanics and Solid Mechanics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0772-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0772-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0771-7

  • Online ISBN: 978-981-15-0772-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics