Skip to main content

IPN Dendrimers in Drug Delivery

  • Chapter
  • First Online:
Interpenetrating Polymer Network: Biomedical Applications

Abstract

Instead of enormous development in biomedical field, the treatment of severe ailments like tuberculosis, visceral leishmaniasis, systemic fungal infections, HIV and cancer still faces noteworthy confronts like severe toxicities, resistance and patient non-compliance, etc. To overcome these problems interpenetrating polymeric nanomaterials like liposomes, nanoparticles, dendrimers, carbon nanotubes and quantum dots are continuously being explored to improve therapeutic index of available medicine as well as new drug entity. This review exhaustively summarizes the dendrimer-mediated advancements in the drug delivery as well as possible avenues where dendrimers could be exploited to improve the therapeutic effectiveness of currently available treatment strategies. Dendrimers are a new class of interpenetrating polymer network (IPN) with unique properties like well-defined size and structure, versatility, water solubility, multivalency and internal hydrophobic cavities, which rendered these nanostructures an emerging carrier in biomedical and drug delivery applications. Classically, these well-defined nano-architectures have been explored as nanoscaffolds and nano-containers to conjugate and deliver drugs, genes, oligonucleopeptides, imaging agents, siRNA, aptamers, etc. In spite of tremendous research efforts over nearly three decades, the stakeholders are confronted with certain fundamental issues related to dendrimer applications. In this review, we propose to dwell upon the unexplored facets of dendrimer research with possible applications in drug delivery.

IPN: Interpenetrating polymer network

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agashe HB, Dutta TD, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J Pharm Pharmacol 58(11):1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Agrawal P, Gupta U, Jain NK (2007) Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28:3349–3359

    Article  CAS  PubMed  Google Scholar 

  • Ambade AV, Savariar EN, Thayumanavan S (2005) Dendrimeric micelles for controlled drug release and targeted delivery. Mol Pharm 2(4):264–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir RJ, Danieli E, Shabat D (2006) Domino dendrimers. Adv Poly Sci 192:59–94

    Article  CAS  Google Scholar 

  • Amir RJ, Danieli E, Shabat D (2007) Receiver-amplifier, self-immolative dendritic device. Chemistry 13(3):812–821

    Article  CAS  PubMed  Google Scholar 

  • Asthana A, Chauhan AS, Diwan P, Jain NK (2005) Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS Pharm Sci Tech 6(3):E536–E542

    Article  Google Scholar 

  • Avaritt BR, Swaan PW (2014) Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation. Pharm Res 31(9):2429–2438

    Article  CAS  PubMed  Google Scholar 

  • Avci P, Erdem SS, Hamblin MR (2014) Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol 10(9):1937–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Bajwa N, Mehra NK, Jain K, Jain NK (2016a) Pharmaceutical and biomedical applications of quantum dots. Artif Cells Nanomed Biotechnol 44(3):758–768

    CAS  PubMed  Google Scholar 

  • Bajwa N, Mehra NK, Jain K, Jain NK (2016b) Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol 44(7):1774–1782

    Article  CAS  PubMed  Google Scholar 

  • Barraza LF, Jimenez VA, Alderete JB (2017) Association of methotrexate with native and PEGylated PAMAM-G4 dendrimers: effect of the PEGylation degree on the drug-loading capacity and preferential binding sites. J Phys Chem B 121(1):4–12

    Article  CAS  PubMed  Google Scholar 

  • Bhadra D, Bhadra S, Jain S, Jain NK (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–124

    Article  CAS  PubMed  Google Scholar 

  • Bhadra D, Yadav AK, Bhadra S, Jain NK (2005) Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm 295:221–233

    Article  CAS  PubMed  Google Scholar 

  • Bharatwaj B, Dimovski R, Conti DS, da Rocha SR (2014) Polymeric nanocarriers for transport modulation across the pulmonary epithelium: dendrimers, polymeric nanoparticles, and their nanoblends. AAPS J 16(3):522–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunetti V, Bouchet LM, Strumia MC (2015) Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems. Nanoscale 7:3808–3816

    Article  CAS  PubMed  Google Scholar 

  • Brunner K, Harder J, Halbach T, Willibald J, Spada F, Gnerlich F, Sparrer K, Beil A, Mockl L, Brauchle C, Conzelmann K, Carell T (2015) Cell-penetrating and neurotargeting dendritic siRNA nanostructures. Angew Chem Int Ed Engl 54(6):1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Bugno J, Hsu HJ, Hong S (2015) Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. J Drug Target 23(7–8):642–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caminade AM, Laurent R, Majoral JP (2005) Characterization of dendrimers. Adv Drug Del Rev 57:2130–2146

    Article  CAS  Google Scholar 

  • Cason CA, Oehrle SA, Fabré TA, Girten CD, Walters KA, Tomalia DA, Haik KL, Bullen HA (2008) Improved methodology for monitoring poly(amidoamine) dendrimers surface transformations and product quality by ultra performance liquid chromatography. J Nanomat 2008(456082):1–7

    Article  CAS  Google Scholar 

  • Cason CA, Fabré TA, Buhrlage A, Haik KL, Bullen HA (2012) Low-level detection of poly(amidoamine) PAMAM dendrimers using immunoimaging scanning probe microscopy. Int J Anal Chem 2012(341260):1–8

    Article  CAS  Google Scholar 

  • Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res A 82(1):92–103

    Article  PubMed  CAS  Google Scholar 

  • Chanvorachote B, Qiu J, Muangsiri W, Nimmannit U, Kirsch LE (2015) The interaction mechanism between lipopeptide (daptomycin) and polyamidoamine (PAMAM) dendrimers. J Pept Sci. https://doi.org/10.1002/psc.2752

    Article  CAS  PubMed  Google Scholar 

  • Chen HT, Neerman MF, Parrish AR, Simanek E (2004) Cytotoxicity, haemolysis, and acute in vivo toxicity of dendrimer based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126(32):10044–10048

    Article  CAS  PubMed  Google Scholar 

  • Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, Fata JE (2013) Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anti Cancer Agents Med Chem 13(10):1531–1539

    Article  CAS  Google Scholar 

  • Diaz C, Guzmán J, Jiménez VA, Alderete JB (2018) Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharm Dev Technol 23(7):689–696

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolskaia MA (2017) Dendrimers effects on the immune system: insights into toxicity and therapeutic utility. Curr Pharm Des. https://doi.org/10.2174/1381612823666170309151958

  • Duncan R, Malik N (1996) Dendrimers: biocompatibility and potential for delivery of anticancer agents. Proc Int Symp Control Release Bioact Mater 23:105–106

    Google Scholar 

  • Dutta T, Jain NK (2007) Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta 1770(4):681–686

    Article  CAS  PubMed  Google Scholar 

  • Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE (2014) Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem 21(36):4186–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed M, Kiani MF, Naimark MD, Hikal AH, Ghandehari H (2001) Extravasation of poly(amidoamine) (pamam) dendrimers across microvascular network endothelium. Pharm Res 18:23–28

    Article  CAS  PubMed  Google Scholar 

  • Estanqueiro M, Amaral MH, Conceicao J, Sousa Lobo JM (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces 126C:631–648

    Article  CAS  Google Scholar 

  • Falanga A, Tarallo R, Carberry T, Galdiero M, Weck M, Galdiero S (2014) Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized Dendrimers. PLoS One 9(11):e112128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK (2009) Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol 61(8):989–1003

    Article  CAS  PubMed  Google Scholar 

  • Ganneau C, Simenel C, Emptas E, Courtiol T, Coic YM, Artaud C, Deriaud E, Bonhomme F, Delepierre M, Leclerc C, Lo-Man R, Bay S (2017) Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate. Org Biomol Chem 15:114–123

    Article  CAS  Google Scholar 

  • Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S (2014) Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int 014(394264):1–23

    Article  CAS  Google Scholar 

  • Gnaim S, Shabat D (2014) Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Acc Chem Res 47(10):2970–2984

    Article  CAS  PubMed  Google Scholar 

  • Harada A, Matsuki R, Ichimura S, Yuba E, Kono K (2013) Intracellular environment-responsive stabilization of polymer vesicles formed from head-tail type polycations composed of a polyamidoaminedendron and poly(L-lysine). Molecules 18(10):12168–12179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Alves CS, Oliveira N, Rodrigues J, Zhu J, Banyai I, Tomas H, Shi X (2015) RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf B Biointerfaces 125:82–89

    Article  CAS  PubMed  Google Scholar 

  • Heyder RS, Zhong Q, Bazito RC, da Rocha SR (2017) Cellular internalization and transport of biodegradable polyester dendrimers on a model of the pulmonary epithelium and their formulation in pressurized metered-dose inhalers. Int J Pharm 520(1–2):181–194

    Article  CAS  PubMed  Google Scholar 

  • Hinman SS, Ruiz CJ, Cao Y, Ma MC, Tang J, Laurini E, Posocco P, Giorgio S, Pricl S, Peng L, Cheng Q (2017) Mix and match: Coassembly of amphiphilic dendrimers and phospholipids creates robust, modular, and controllable interfaces. ACS Appl Mater Interfaces 11;9(1):1029–1035

    Article  CAS  Google Scholar 

  • Hsu HJ, Bugno J, Lee S, Hong S (2017) Dendrimer-based nanocarriers: a versatile platform for drug delivery. Adv Rev 9(1):e1409

    Google Scholar 

  • Huang M, Yang CS, Xin Y, Jiang G (2017) Epidermal growth factor receptor-targeted poly(amidoamine)-based dendrimer complexed oncolytic adenovirus: is it safe totally? J Thorac Dis 9(1):E89–E90

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutnick MA, Ahsanuddin S, Guan L, Lam M, Baron ED, Pokorski JK (2017) PEGylated dendrimers as drug delivery vehicles for the photosensitizer silicon phthalocyanine Pc 4 for candidal infections. Biomacromolecules 18(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Ihre H, Padilla De Jesús OL, Fréchet JM (2001) Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J Am Chem Soc 123(25):5908–5917

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Jain NK (2012) Dual strategy for treatment of cancer based on development of antiangiogenic carrier for anticancer agent. 2nd international conference on Pharmaceutics & Novel Drug Delivery Systems, Pharm Anal Acta. https://doi.org/10.4172/2153-2435.S1.10

  • Jain K, Jain NK (2013) Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discov Today 18(23–24):1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Jain NK (2014a) Dendrimer: a 21st century nanobiopolymer. Chronicle Pharmabiz. http://www.pharmabiz.com/ArticleDetails.aspx?aid=81282&sid=21

  • Jain K, Jain NK (2014b) Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J Nanosci Nanotechnol 14(7):5075–5087

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Jain NK (2015) Dendrimers as nanobiopolymers in cancer chemotherapy. Nanobiomedicine, M/s Studium Press LLC, USA

    Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2012) A review of glycosylated carriers for drug delivery. Biomaterials 33(16):4166–4186

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Jain K, Mehra NK, Jain NK (2013) Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J Nanopart Res 15(2003):1–19

    Google Scholar 

  • Jain K, Gupta U, Jain NK (2014a) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm 87(3):500–509

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Mehra NK, Jain NK (2014b) Potentials and emerging trends in nanopharmacology. Curr Opin Pharmacol 15C:97–106

    Article  CAS  Google Scholar 

  • Jain K, Mehra NK, Jain NK (2015a) Targeted delivery of anticancer drug with antiangiogenic dendrimers for effective cancer treatment. Nanotechnology: Novel Perspectives and Prospects, McGraw-Hill, USA, pp 838–842

    Google Scholar 

  • Jain K, Verma AK, Mishra PR, Jain NK (2015b) Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine. https://doi.org/10.1016/j.nano.2014.11.008

    Article  CAS  Google Scholar 

  • Jain K, Verma AK, Mishra PR, Jain NK (2015c) Surface engineered dendrimeric nanoconjugates for macrophage targeted delivery of amphotericin B: formulation development, in vitro and in vivo evaluation. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.04213-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain K, Mehra NK, Jain NK (2015d) Nanotechnology in drug delivery: safety and toxicity issues. Curr Pharm Des 21(29):4252–4261

    Article  CAS  PubMed  Google Scholar 

  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown N, D’Emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    Article  CAS  PubMed  Google Scholar 

  • Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, Trevaskis NL, Chan LJ, Sloan EK, Finnin BA, Williamson M, Velkov T, Williams ED, Kelly BD, Owen DJ, Porter CJ (2015) Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm 12(2):432–443

    Article  CAS  PubMed  Google Scholar 

  • Kang YO, Lee TS, Park WH (2014) Green synthesis and antimicrobial activity of silver chloride nanoparticles stabilized with chitosan oligomer. J Mater Sci Mater Med 25(12):2629–2638

    Article  CAS  PubMed  Google Scholar 

  • Kannan S, Kolhe P, Raykova V, Glibatec M, Kannan RM, Lieh-Lai M, Bassett D (2004) Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells. J Biomater Sci Polymer Ed 15:311–330

    Article  CAS  Google Scholar 

  • Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK (2016) A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res 18(6):1–14

    Article  CAS  Google Scholar 

  • Kaur A, Jain K, Mehra NK, Jain NK (2017a) Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif Cells Nanomed Biotechnol 45(3):414–425

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Mehra NK, Jain K, Jain NK (2017b) Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system. Artif Cells Nanomed Biotechnol 45(2):242–250

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Poly Sci 39(2):268–307

    Article  CAS  Google Scholar 

  • Khatri S, Das NG, Das SK (2014) Effect of methotrexate conjugated PAMAM dendrimers on the viability of MES-SA uterine cancer cells. J Pharm Bioallied Sci 6(4):297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodadust R, Unsoy G, Gunduz U (2014) Development of poly (I:C) modified doxorubicin loaded magnetic dendrimer nanoparticles for targeted combination therapy. Biomed Pharmacother 68(8):979–987

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Yoon HJ, Sim J, Ju SY, Jang WD (2014) The effects of dendrimer size and central metal ions on photosensitizing properties of dendrimer porphyrins. J Drug Target 22(7):610–618

    Article  CAS  PubMed  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208

    Article  CAS  PubMed  Google Scholar 

  • Kojima C, Regino C, Umeda Y, Kobayashi H, Kono K (2010) Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers. Int J Pharm 383:293–296

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Choi SH, Kim SH, Park TG (2008) Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J Control Release 125:25–32

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen L, Liu N, Li S, Hao Y, Zhang X (2015) EGF-coated nano-dendriplexes for tumor-targeted nucleic acid delivery in vivo. Drug Deliv. https://doi.org/10.3109/10717544.2015.1004381

  • Lin J, Hua W, Zhang Y, Li C, Xue W, Yin J, Liu Z, Qiu X (2015) Effect of poly(amidoamine) dendrimers on the structure and activity of immune molecules. Biochim Biophys Acta 1850(2):419–425

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hao W, Lok CN, Wang YC, Zhang R, Wong KK (2014) Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg 49(12):1846–1851

    Article  PubMed  Google Scholar 

  • Liu S, Dicker KT, Jia X (2015) Modular and orthogonal synthesis of hybrid polymers and networks. Chem Commun (Camb) 51:5218–5237

    Article  CAS  Google Scholar 

  • Madaan K, Lather V, Pandita D (2014) Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. https://doi.org/10.3109/10717544.2014.910564

    Article  PubMed  CAS  Google Scholar 

  • Majoros IJ, Williams CR, Tomalia DA, Baker JR Jr (2008) New dendrimers: synthesis and characterization of POPAM – PAMAM hybrid dendrimers. Macromolecules 41(22):8372–8379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125 I-labelled polyamidoamine dendrimers in vivo. J Control Release 65(1–2):133–148

    Article  CAS  PubMed  Google Scholar 

  • Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T (2014) Molecular modeling to study dendrimers for biomedical applications. Molecules 19(12):20424–20467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehra NK, Verma AK, Mishra PR, Jain NK (2014) The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 35(15):4573–4588

    Article  CAS  PubMed  Google Scholar 

  • Mehra NK, Jain K, Jain NK (2015a) Novel triazine dendrimer. Encyclopedia of biomedical polymers and polymeric biomaterials. CRC Press. https://doi.org/10.1081/E-EBPP-120049287.

    Chapter  Google Scholar 

  • Mehra NK, Jain K, Jain NK (2015b) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today. https://doi.org/10.1016/j.drudis.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  • Mehra NL, Cai D, Kuo L, Hein T, Palakurthi S (2016) Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicol 10(7):836–860

    Article  CAS  Google Scholar 

  • Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP (2015) Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 16(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, Alibakhshi A (2013) PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev 14(11):6925–6928

    Article  PubMed  Google Scholar 

  • Myc A, Majoros IJ, Thomas TP, Baker JR Jr (2007) Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 8(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Namazi H, Toomari Y, Abbaspour H (2014) Fabrication of triblock ABA type peptide dendrimer based on glutamic acid dimethyl ester and PEG as a potential nano drug delivery agent. Bioimpacts 4(4):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Neerman MF, Zhang W, Parrish AR, Simanek EE (2004) In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm 281:129–132

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL, Nguyen TH, Nguyen CK, Nguyen DH (2017) Redox and pH responsive poly (amidoamine) dendrimer-heparin conjugates via disulfide linkages for letrozole delivery. BioMed Res Int. Article ID 8589212, 7 pages

    Google Scholar 

  • Nourse A, Millar DB, Minton AP (2000) Physicochemical characterization of generation 5 polyamidoamine dendrimers. Biopolymers 53(4):316–328

    Article  CAS  PubMed  Google Scholar 

  • Oddone N, Lecot N, Fernández M, Rodriguez-Haralambides A, Cabral P, Cerecetto H, Benech JC (2016) In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. J Nanobiotechnol 14:45

    Article  CAS  Google Scholar 

  • Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JM, Szoka FC Jr (2002) Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem 13(3):453–461

    Article  PubMed  CAS  Google Scholar 

  • Pathak K, Raghuvanshi S (2015) Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. https://doi.org/10.1007/s40262-015-0242-x

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Wu Z, Qi X, Chen Y, Li X (2013) Dendrimers as potential therapeutic tools in HIV inhibition. Molecules 18:7912–7929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira PM, Silva S, Cavaleiro JA, Ribeiro CA, Tome JP, Fernandes R (2014) Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy. PLoS One 9(4):e95529

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 10:1001–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ (1999) Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice. Vaccine 18(1–2):140–152

    Article  CAS  PubMed  Google Scholar 

  • Riechers S, Zhong Q, Yin NN, Karsai A, da Rocha SR, Liu GY (2015) High-resolution imaging of polyethylene glycol coated dendrimers via combined atomic force and scanning tunneling microscopy. J Drug Deliv 2015(535683):1–10

    Article  CAS  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyaminoamine (PAMAM) starburst dendrimers. J Biomed Mater Res 30:53–65

    Article  CAS  PubMed  Google Scholar 

  • Sagi A, Weinstain R, Karton N, Shabat D (2008) Self-immolative polymers. J Am Chem Soc 130(16):5434–5435

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel T, Toth I, Florence AT (1999) Distribution of a lipidic 2.5 nm diameter dendrimer carrier after oral administration. Int J Pharm 183:51–55

    Article  CAS  PubMed  Google Scholar 

  • Sedláková P, Svobodová J, Miksík I, Tomás H (2006) Separation of poly(amidoamine) (PAMAM) dendrimer generations by dynamic coating capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 841(1–2):135–139

    Article  PubMed  CAS  Google Scholar 

  • Setaro F, Brasch M, Hahn U, Koay MS, Cornelissen JJ, de la Escosura A, Torres T (2015) Generation-dependent templated self-assembly of biohybrid protein nanoparticles around photosensitizer dendrimers. Nano Lett 15(2):1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Mohanty DK, Desai A, Ali R (2003) A simple polyacrylamide gel electrophoresis procedure for separation of polyamidoamine dendrimers. Electrophoresis 24(16):2733–2739

    Article  CAS  PubMed  Google Scholar 

  • Shcharbin D, Shcharbina N, Shakhbazau A, Mignani S, Majoral JP, Bryszewska M (2015) Phosphorus-containing nanoparticles: biomedical patents review. Expert Opin Ther Pat. https://doi.org/10.1517/13543776.2015.1010512

    Article  CAS  PubMed  Google Scholar 

  • Shcharbin D, Shcharbina N, Dzmitruk V, Pedziwiatr-Werbicka E, Ionov M, Mignani S, de la Mata FJ, Gomez R, Munoz-Fernandez MA, Majoral JP, Bryszewska M (2017) Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf B Biointerfaces 152:414–422

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Patri AK, Lesniak W, Islam MT, Zhang C, Baker JR Jr, Balogh LP (2005) Analysis of poly(amidoamine)-succinamic acid dendrimers by slab-gel electrophoresis and capillary zone electrophoresis. Electrophoresis 26(15):2960–2967

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Bi X, Ganser TR, Hong S, Myc LA, Desai A, Holl MM, Baker JR Jr (2006) HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein. Analyst 131(7):842–848

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Jain K, Mehra NK, Jain NK (2016) Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 44(7):1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine (Lond) 9(17):2657–2669

    Article  CAS  Google Scholar 

  • Somani S, Dufès C (2014) Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine (Lond) 9(15):2403–2414

    Article  CAS  Google Scholar 

  • Soni N, Jain K, Gupta U, Jain NK (2015) Controlled delivery of gemcitabine hydrochloride using mannosylated poly (propyleneimine) dendrimers. J Nanopart Res 17(11):458

    Article  CAS  Google Scholar 

  • Sousa-Herves A, Novoa-Carballal R, Riguera R, Fernandez-Megia E (2014) GATG dendrimers and PEGylated block copolymers: from synthesis to bioapplications. AAPS J 16(5):948–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza JG, Dias K, Silva SA, de Rezende LC, Rocha EM, Emery FS, Lopez RF (2015) Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. J Control Release 200:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sowinska M, Urbanczyk-Lipkowska Z (2014) Advances in the chemistry of dendrimers. New J Chem 38:2168–2203

    Article  CAS  Google Scholar 

  • Stasko NA, Johnson CB, Schoenfisch MH, Johnson TA, Holmuhamedov EL (2007) Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial cells. Biomacromolecules 8(12):3853–3859

    Article  CAS  PubMed  Google Scholar 

  • Stöckigt D, Lohmer G, Belder D (1996) Separation and identification of basic dendrimers using capillary electrophoresis on-line coupled to a sector mass spectrometer. Rapid Commun Mass Spectrom 10(5):521–526

    Article  Google Scholar 

  • Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst dendritic molecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  • Tsutsumiuchi K, Aoi K, Okada M (2000) Ion complex formation between poly(amido amine) dendrimer HCl salt and poly(l-glutamic acid) sodium salt. Polym J 32:107–112

    Article  CAS  Google Scholar 

  • Tulu M, Aghatabay NM, Senel M, Dizman C, Parali T, Dulger B (2009) Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules. Eur J Med Chem 44(3):1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 20:23–38

    Article  CAS  Google Scholar 

  • Wang L, Xu X, Zhang Y, Zhang Y, Zhu Y, Shi J, Sun Y, Huang Q (2013) Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med 24(9):2137–2144

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang Q, Chang H, Xiao J, Cheng Y (2016) Stimuli-responsive dendrimers in drug delivery. Biomater Sci 4(3):375–390

    Article  CAS  PubMed  Google Scholar 

  • Weber N, Ortega P, Clemente MI, Shcharbin D, Bryszewska M, de la Mata FJ, Gómez R, Muñoz-Fernández MA (2008) Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J Control Release 32(1):55–64

    Article  CAS  Google Scholar 

  • Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang XJ, Rocchi P, Peng L (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci U S A 112(10):2978–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. https://doi.org/10.1039/C4CS00392F

    Article  CAS  PubMed  Google Scholar 

  • Wong PT, Choi SK (2015) Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 16(1):1772–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem. https://doi.org/10.1021/acs.bioconjchem.5b00031

    Article  CAS  PubMed  Google Scholar 

  • Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC (2011) Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomedicine 6:2779–2790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H (2016) Targeted nanosystems: advances in targeted dendrimers for cancer therapy. Nanomedicine 12(2):309–316

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polymer Ed 17:3–19

    Article  CAS  Google Scholar 

  • Yellepeddi YK, Ghandehari H (2016) Poly(amido amine) dendrimers in oral delivery. Tissue Barriers 4(2):e1173773 (1–12)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Sun HJ, Hughes AD, Moussodia RO, Bertin A, Chen Y, Pochan DJ, Heiney PA, Klein ML, Percec V (2014) Self-assembly of amphiphilic Janus dendrimers into uniform onion-like dendrimersomes with predictable size and number of bilayers. Proc Natl Acad Sci U S A 111(25):9058–9063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Lu ZR (2014) Dendritic nanoglobules with polyhedral oligomeric silsesquioxane core and their biomedical applications. Nanomedicine (Lond) 9(15):2387–2401

    Article  CAS  Google Scholar 

  • Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van Kirk EA, Murdoch WJ (2014) Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew Chem Int Ed Engl 53(41):10949–10955

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors report no conflict of interest related to manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, K., Mehra, N.K., Jain, V.K., Jain, N.K. (2020). IPN Dendrimers in Drug Delivery. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_6

Download citation

Publish with us

Policies and ethics