Skip to main content

Chitosan-Based Systems for Theranostic Applications

  • Chapter
  • First Online:
Functional Chitosan

Abstract

The ideal theranostic approach is capable of several functions ranging from diagnosis to treatment with accurate targeting of cancer-specific cells. Therefore, the newest generation of theranostic systems offers opportunities to combine passive and active targeting, environmentally responsive drug release, molecular imaging, and other therapeutic functions into a single biomedical platform. To achieve this purpose, biomedical researchers have developed various systems composed of organic or inorganic materials. Due to its remarkable physicochemical and biological properties, chitosan and its derivatives have been employed in the development of composite theranostic systems able of prediction, real-time monitoring, and assessment of the therapeutic responses. This review outlines recent developments of chitosan-based systems for theranostic applications and analyzes them in terms of performances and limits. Conclusions and future perspectives will both synthesize the state of the art of the chitosan applications in theragnosis and the authors’ point of view about insights toward biopolymer unexploited implications in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agyare EK, Jaruszewski KM, Curran GL et al (2014) Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release 185:121–129

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M (2018) Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif Cells Nanomed Biotechnol 46:75–81

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi F, Oveisi Z, Mohammadi Samani S, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10:1): 1–1):16

    PubMed  PubMed Central  Google Scholar 

  • Aleem AR, Shahzadi L, Alvi F et al (2017) Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Mater Des 133:417–421

    Article  CAS  Google Scholar 

  • Anitha A, Sowmya S, Sudheesh Kumar PT et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  • Anraku M, Tabuchi R, Ifuku S et al (2017) An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats. Carbohydr Polym 161:21–25

    Article  CAS  PubMed  Google Scholar 

  • Anraku M, Gebicki JM, Iohara D et al (2018) Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr Polym 199:141–149

    Article  CAS  PubMed  Google Scholar 

  • Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nanoemulsion templates—a review. J Control Release 128:185–199

    Article  CAS  PubMed  Google Scholar 

  • Ashjari M, Khoee S, Mahdavian AR (2012) A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation. Polym Int 61:850–859

    Article  CAS  Google Scholar 

  • Azuma K, Tomohiro Osaki T, Minami S et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6(1):33–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balan V, Dodi G, Tudorachi N et al (2015) Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: synthesis and characterization. Chem Eng J 279:188–197

    Article  CAS  Google Scholar 

  • Balan V, Redinciuc V, Tudorachi N, Verestiuc L (2016) Biotinylated N-palmitoyl chitosan for design of drug loaded self-assembled nanocarriers. Eur Polym J 81:284–294

    Article  CAS  Google Scholar 

  • Baranwal A, Kumar A, Priyadharshini A et al (2018) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123

    Article  CAS  PubMed  Google Scholar 

  • Barbosa JN, Amaral IF, Aguas AP et al (2010) Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J Biomed Mater Res A 93(1):20–28

    PubMed  Google Scholar 

  • Barenholz Y (2012) Doxil(R) — the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  • Bellich B, D’Agostino I, Semeraro S et al (2016) “The good, the bad and the ugly” of chitosans. Mar Drugs 14(5):99–130

    Article  PubMed Central  CAS  Google Scholar 

  • Biswas S, Sen KK, Roy R et al (2014) Chitosan-based particulate system for oral vaccine delivery: a review. Int J Pharm 4(1):226–236

    Google Scholar 

  • Bressan E, Favero V, Gardin C et al (2011) Biopolymers for hard and soft engineered tissues: Application in odontoiatric and plastic surgery field. Polymers 3:509–526

    Article  CAS  Google Scholar 

  • Bružauskaitė I, Bironaitė D, Bagdonas E et al (2015) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai SJ, Li CW, Weihs D et al (2017) Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci Technol Adv Mater 18(1):987–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SH, Wu CH, Tsai GJ (2018) Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym 181:1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Charron DM, Chen J, Zheng G (2015) Theranostic lipid nanoparticles for cancer medicine. Cancer Treat Res 166:103–127

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari AA, Vig K, Baganizi DR et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):1974

    Article  PubMed Central  CAS  Google Scholar 

  • Chen X, Wong STC (2014) Cancer theranostics: an introduction. In: Chen X, Wong STC (eds) Cancer theranostics. Academic/Elsevier, Oxford, pp 3–8

    Chapter  Google Scholar 

  • Chen R, Zheng X, Qian H et al (2013a) Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomater Sci 3:285–293

    Article  Google Scholar 

  • Chen R, Wang X, Yao X et al (2013b) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34:8314–8322

    Article  CAS  PubMed  Google Scholar 

  • Cheung RCF, Ng TB, Wong JH et al (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156–5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CS, Hu SH, Liao BJ et al (2014) Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine 10:99–107

    Article  CAS  PubMed  Google Scholar 

  • Chiu YL, Ho YC, Chen YM et al (2010) The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically modified chitosan. J Control Release 146:152–159

    Article  CAS  PubMed  Google Scholar 

  • Cho B-B, Choi K (2018) Preparation of chitosan microspheres containing 166Dy/166Ho in vivo generators and their theranostic potential. J Radioanal Nucl Chem 317:1123–1132

    Article  CAS  Google Scholar 

  • Cho J, Heuzey MC, Bégin A et al (2005) Physical gelation of chitosan in the presence of β -glycerophosphate: the effect of temperature. Biomacromolecules 6(6):3267–3275

    Article  CAS  PubMed  Google Scholar 

  • Choi D, Jeon S, You DG et al (2018) Iodinated echogenic glycol chitosan nanoparticles for X-ray CT/US dual imaging of tumor. Nanotheranostics 2(2):117–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Yusof F, Salim WWAW et al (2016) An overview of drug delivery vehicles for cancer treatment: nanocarriers and nanoparticles including photovoltaic nanoparticles. J Photochem Photobiol B Biol 164:151–159

    Article  CAS  Google Scholar 

  • Correia DM, Lanceros-Mendez S, Sencadas V et al (2017) Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr Polym 16:752–758

    Google Scholar 

  • Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP et al (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76(3):472–448

    Article  CAS  Google Scholar 

  • Crini G, Guibal E, Morcellet M et al (2009) In: Chitine et chitosane, du biopolymère à l’application. Crini G, Badot PM, Guibal E (eds) Presse Universitaires de Franche-Comté, Besançon, p 19

    Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Czechowska-Biskup R, Jarosińska D, Rokita B et al (2012) Determination of degree of deacetylation of chitosan – comparison of methods. Progress on Chemistry and Application of Chitin and its Derivatives 17:5–20

    CAS  Google Scholar 

  • Dadras P, Atyabi F, Irani S et al (2017) Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 97:47–54

    Article  CAS  PubMed  Google Scholar 

  • Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-infective Ther 9(7):857–879

    Article  CAS  Google Scholar 

  • Darsanaki RK, Azizzadeh A, Nourbakhsh M et al (2013) Biosensors: functions and Applications. J Biol Today’s World 2(1):53–61

    Google Scholar 

  • Davis PJ, Davis FB, Lin HY (2006) L-thyroxine acts as a hormone as well as a prohormone at the cell membrane. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry 6(3):235–240

    Article  CAS  Google Scholar 

  • de Smet M, Langereis S, van den Bosch S et al (2013) SPECT/CT imaging of temperature-sensitive liposomes for MR image guided drug delivery with high intensity focused ultrasound. J Control Release 169:82–90

    Article  PubMed  CAS  Google Scholar 

  • Deng P, Fei J, Feng Y (2011) Sensitive voltammetric determination of tryptophan using an acetylene black paste electrode modified with a Schiff’s base derivative of chitosan. Analyst 136:5211–5217

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Cao M, Zhang J et al (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35:4333–4344

    Article  CAS  PubMed  Google Scholar 

  • Desai KG (2016) Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances. Crit Rev Ther Drug Carrier Syst 33(2):107–158

    Article  PubMed  Google Scholar 

  • Ding L, Shan X, Zhao et al (2017) Spongy bilayer dressing composed of chitosan–Ag nanoparticles and chitosan–Bletilla striata polysaccharide for wound healing applications. Carbohydr Polym 157:1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Dürr S, Janko C, Lyer S et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2:395–409

    Article  CAS  Google Scholar 

  • Dutta PK, Rinki K, Dutta J (2011) Chitosan: a promising biomaterial for tissue engineering scaffold. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials II. Springer, Heidelberg, p 57

    Google Scholar 

  • Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications – focus on prostate and breast cancer. Int J Mol Sci 18(5):1102

    Article  PubMed Central  CAS  Google Scholar 

  • Fan C, Gao W, Chen Z et al (2011) Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404:180–190

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Zhang M (2010) Nanoparticle-based theragnostics: Integrating diagnostic and therapeutic potentials in nanomedicine. J Control Release 146:2–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathi M, Majidi S, Zangabad PS et al (2018) Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 38:2110–2136

    Article  PubMed  Google Scholar 

  • Feksa LR, Troian EA, Muller CD et al (2018) Hydrogels for biomedical applications. In: Grumezescu AM (ed) Nanostructures for the engineering of cells, tissues and organs from design to applications. Applied Science Publisher, Oxford, pp 403–438

    Chapter  Google Scholar 

  • Feng Y, Yang L, Li F (2010) A novel sensing platform based on periodate-oxidized chitosan. Anal Methods 2:2011–2016

    Article  CAS  Google Scholar 

  • Gallaher DD (2003) Chitosan, cholesterol lowering, and caloric loss. Agro Food Ind Hi Tech 14(5):32

    CAS  Google Scholar 

  • Geckil H, Xu F, Zhang X et al (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine (London) 5(3):469–484

    Article  CAS  Google Scholar 

  • Gianino E, Miller C, Gilmore J (2018) Smart wound dressings for diabetic chronic wounds. Bioengineering 5(51):1–26

    Google Scholar 

  • Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci 2(4):497–502

    Article  Google Scholar 

  • Habash RWY (2018) Therapeutic hyperthermia. In: Romanovsky AA (ed) Handbook of clinical neurology, vol 157 (3rd series) Thermoregulation: from basic neuroscience to clinical neurology, Part II. Elsevier, Amsterdam, pp 853–867

    Google Scholar 

  • Haeri A, Zalba S, ten Hagen TLM et al (2016) EGFR targeted thermosensitive liposomes: a novel multifunctional platform for simultaneous tumor targeted and stimulus responsive drug delivery. Colloids Surf B: Biointerfaces 146:657–669

    Article  CAS  PubMed  Google Scholar 

  • Hamdi M, Nasri R, Hajji S et al (2019) Acetylation degree, a key parameter modulating chitosan rheological, thermal and film-forming properties. Food Hydrocoll 87:48–60

    Article  CAS  Google Scholar 

  • Hamedi H, Moradi S, Hudson SM et al (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 1(199):445–460

    Article  CAS  Google Scholar 

  • Hejjaji EMA, Smith AM, Morris GA (2018) Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol 120:1610–1617

    Article  CAS  PubMed  Google Scholar 

  • Hirai A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26(1):87–94

    Article  CAS  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  • Hsiao MH, Mu Q, Stephen ZR et al (2015) Hexanoyl-chitosan-PEG copolymer coated iron oxide nanoparticles for hydrophobic drug delivery. ACS Macro Lett 4(4):403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua XW, Bao YW, Chen Z et al (2017) Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 9:10948–10960

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, He S, Cao W (2012) Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 4:6135–6149

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Bao C, Lin Y et al (2013) Disulfide-phenylazide: a reductively cleavable photoreactive linker for facile modification of nanoparticle surfaces. J Mater Chem B 1:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Xu C, Li Y et al (2019) Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy. Mater Sci Eng C Mater Biol Appl 96:129–137

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM, El-Zairy EMR (2015) Chitosan as a biomaterial – structure, properties, and electrospun nanofibers. In: Bobbarala V (ed) Concepts, compounds and the alternatives of antibacterials. IntechOpen, Rijeka, pp 81–100

    Google Scholar 

  • Ikeda T, Ikeda K, Yamamoto K et al (2014) Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res Int 2014:Article ID 786892

    Article  Google Scholar 

  • Iqbal MA, Md S, Sahni JK et al (2012) Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 20:813–830

    Article  CAS  PubMed  Google Scholar 

  • Jatunov S, Franconetti A, Prado-Gotor R et al (2015) Fluorescent amino and secondary amino chitosans as potential sensing biomaterials. Carbohydr Polym 123:288–296

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar R, Reis RL, Mano JF (2006) Chemistry and applications of phosphorylated chitin and chitosane. Polymer 2006, 035

    Google Scholar 

  • Jeelani S, Reddy RC, Maheswaran T et al (2014) Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci 6:S6–S8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Controll Rel 190:352–370

    Article  CAS  Google Scholar 

  • Ji J, Hao S, Liu W et al (2011) Preparation and evaluation of O-carboxymethyl chitosan/cyclodextrin nanoparticles as hydrophobic drug delivery carriers. Polym Bull 67:1201–1213

    Article  CAS  Google Scholar 

  • John AE, Luckett JC, Tatler AL et al (2013) Preclinical SPECT/CT imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J Nucl Med 54:2146–2152

    Article  CAS  PubMed  Google Scholar 

  • Jolly P, Tamboli V, Harniman RL et al (2016) Aptamer- MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195

    Article  CAS  PubMed  Google Scholar 

  • Kalliola S, Repo E, Srivastava V et al (2017) The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Colloids Surf B: Biointerfaces 153:229–236

    Article  CAS  PubMed  Google Scholar 

  • Kast CE, Bernkop-Schnurch A (2001) Thiolated polymers – thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22:2345–2352

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40(2):155–175

    Article  CAS  PubMed  Google Scholar 

  • Kelly KA, Allport JR, Tsourkas A et al (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96(3):32736

    Article  CAS  Google Scholar 

  • Kesharwani P, Banerjee S, Gupta U et al (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18:565–572

    Article  CAS  Google Scholar 

  • Khoee S, Yaghoobian M (2008) An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem 44(6):2392–2399

    Article  PubMed  CAS  Google Scholar 

  • Khoshmohabat H, Paydar S, Kazemi HM, Dalfardi B (2016) Overview of agents used for emergency hemostasis. Trauma Mon 21(1):e26023

    PubMed  PubMed Central  Google Scholar 

  • Kim K, Kim JH, Park H et al (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Huy BT, Sakthivel K et al (2015a) Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sens Bio-Sens Res 3:46–52

    Article  Google Scholar 

  • Kim JY, Ryu JH, Schellingerhout D et al (2015b) Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5:1098–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocak N, Sahin M, Kücükkolbasi S, Erdogan ZO (2012) Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor. Int J Biol Macromol 51:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Chen X, Xing K, Park H (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  • Kulkarni NS, Guererro Y, Gupta N et al (2019) Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Techno 49:352–364

    Article  CAS  Google Scholar 

  • Kumar P, Srivastava R (2015) IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. RSC Adv 5:56162–56170

    Article  CAS  Google Scholar 

  • Kumar MNVR, Muzarelli RAA, Muzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  PubMed  Google Scholar 

  • Kumar P, Tambe P, Paknikar KM, Gajbhiyea V (2018) Mesoporous silica nanoparticles as cutting-edge theranostics: advancement from merely a carrier to tailor-made smart delivery platform. J Control Release 287:35–57

    Article  CAS  PubMed  Google Scholar 

  • Laroui H, Dalmasso G, Nguyen HT (2010) Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 138:843–853

    Article  CAS  PubMed  Google Scholar 

  • Larsson M, Huang W-C, Hsiao M-H et al (2013) Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Prog Polym Sci 38:1307–1328

    Article  CAS  Google Scholar 

  • Laurencin CT, Jiang T, Kumbar SG, Nair LS (2008) Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem 8:354–364

    Article  PubMed  Google Scholar 

  • Leal J, Smyth HDC, Ghosh D (2017) Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 532(1):555–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DE, Koo H, Sun IC et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Article  CAS  PubMed  Google Scholar 

  • Lei Q, Wang SB, Hu JJ et al (2017) Stimuli responsive “cluster bomb” for programmed tumor therapy. ACS Nano 11:7201–7214

    Article  CAS  PubMed  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    Article  CAS  PubMed  Google Scholar 

  • Leung SJ, Romanowski M (2012) Light-activated content release from liposomes. Theranostics 2:1020–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G et al (2008) Polymersomes: a new multifunctional tool for cancer diagnosis and therapy. Methods 46(1):2532

    Article  CAS  Google Scholar 

  • Li J, Jiang H, Yu Z et al (2013) Multifunctional uniform core-shell Fe3O4@mSiO2 mesoporous nanoparticles for bimodal imaging and photothermal therapy. Chem-Asian J 8(2):385–391

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li Z, Zhao J et al (2014a) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9(1):146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Mei H, Zheng W, Pan P et al (2014b) A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids Surf B: Biointerfaces 118:77–82

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cai C, Li J et al (2018) Chitosan-based nanomaterials for drug delivery. Molecules 23(10):2661

    Article  PubMed Central  CAS  Google Scholar 

  • Lim EK, Sajomsang W, Choi Y et al (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8:467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J, Li Y, Ki Y et al (2015) Drug/dye-loaded, multifunctional PEG-chitosan-iron oxide nanocomposites for methotrexate synergistically self-targeted cancer therapy and dual model imaging. ACS Appl Mater Interfaces 7:11908–11920

    Article  CAS  PubMed  Google Scholar 

  • Linardy EM, Erskine SM, Lima NE et al (2016) EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets. Biosens Bioelectron 75:59–66

    Article  CAS  PubMed  Google Scholar 

  • Ling Y, Wei K, Luo Y (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7139–7150

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Yang F, Xiong F et al (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453:198–214

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Gao C, Mao Z, Zhou J et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPION): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 11:2323–2338

    Article  CAS  Google Scholar 

  • Malhotra S, Verma A, Tyagi N, Kuma V (2017) Biosensors: principle, types and applications. IJARIIE 3(2):3639–3644

    Google Scholar 

  • Mamasheva E, O’Donnell C, Bandekar A, Sofou S (2011) Heterogeneous liposome membranes with pH-triggered permeability enhance the in vitro antitumor activity of folate-receptor targeted liposomal doxorubicin. Mol Pharm 8:2224–2232

    Article  CAS  PubMed  Google Scholar 

  • Marchand C, Rivard GE, Sun J, Hoemann CD (2009) Solidification mechanisms of chitosan–glycerol phosphate/blood implant for articular cartilage repair. Osteoarthr Cartil 17(7):953–960

    Article  CAS  Google Scholar 

  • Martinou A, Kafetzopoulos D, Bouriotis V (1995) Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr Res 273(2):235–242

    Article  CAS  Google Scholar 

  • Maxwell T, Banu T, Price E et al (2015) Non-cytotoxic quantum dot–chitosan nanogel biosensing probe for potential cancer targeting agent. Nanomaterials 5:2359–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min HS, You DG, Son S et al (2015) Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics 5(12):1402–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(12):11342

    Google Scholar 

  • Mourya VK, Inamdar NNJ (2009) Trimethyl chitosan and its applications in drug delivery. Mater Sci Mater Med 20(5):1057–1079

    Article  CAS  Google Scholar 

  • Mourya VK, Inamdara NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33

    Article  CAS  Google Scholar 

  • Muskovich M, Bettinger CJ (2012) Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 1:248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muxika A, Etxabide A, Uranga J et al (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli C, Tosi G, Francescangeli O, Muzzarelli RAA (2003) Alkaline chitosan solutions. Carbohydr Res 338:2247–2255

    Article  CAS  PubMed  Google Scholar 

  • Na JH, Koo H, Lee S (2011) Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32:5252–5261

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S, Dutta D, Arora N et al (2017) Phytaspase-loaded, Mn-doped ZnS quantum dots when embedded into chitosan nanoparticles leads to improved chemotherapy of HeLa cells using in cisplatin. Biotechnol Lett 39(10):1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Ngo DH, Kim SK (2014) Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73:15–31

    Article  CAS  PubMed  Google Scholar 

  • Nikogeorgos N, Efler P, Kayitmazer AB, Lee S (2015) “Bio-glues” to enhance slipperiness of mucins: improved lubricity and wear resistance of porcine gastric mucin (PGM) layers assisted by mucoadhesion with chitosan. Soft Matter 11:489–498

    Article  CAS  PubMed  Google Scholar 

  • No HK, Park NY, Ho SL, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  PubMed  Google Scholar 

  • Nounou MI, ElAmrawy F, Ahmed N et al (2015) Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer 9:17–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien F (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108(11):4754–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SM, Kim MS, Park SJ et al (2013) Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170:373–379

    Article  CAS  PubMed  Google Scholar 

  • Pellá MCG, Lima-Tenório MK, Tenório-Neto ET et al (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 15(196):233–245

    Article  CAS  Google Scholar 

  • Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Del 705265

    Google Scholar 

  • Pillai CKS, Sharma CP (2009) Electrospinning of chitin and chitosan nanofibres. Trends Biomater Artif Organs 22(3):179–201

    Google Scholar 

  • Pinto C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: NBM 2:8–21

    Article  CAS  Google Scholar 

  • Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Mahato K, Maurya PK, Chandra P (2016) Biomaterials for biosensing applications. J Anal Bioanal Tech 7(2):1000e124

    Google Scholar 

  • Qi X, Rui Y, Fan Y et al (2015) Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor targeted delivery of doxorubicin in vivo. Colloids Surf B Bioint 133:314–322

    Article  CAS  Google Scholar 

  • Qin C, Li H, Xiao Q et al (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63(3):367–374

    Article  CAS  Google Scholar 

  • Qiu LY, Zheng C, Jin Y, Zhu K (2007) Polymeric micelles as nanocarriers for drug delivery. Exp Op Therap Pat 17(7):819–830

    Article  CAS  Google Scholar 

  • Rhee JK, Park OK, Lee A (2014) Glycol Chitosan-based fluorescent theranostic nanoagents for cancer therapy. Mar Drugs 12:6038–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusu AG, Popa MI, Ibanescu C et al (2016) Tailoring the properties of chitosan-poly (acrylic acid) based hydrogels by hydrophobic monomer incorporation. Mater Lett 164:320–324

    Article  CAS  Google Scholar 

  • Sabaeian M, Nasab K (2012) Size dependent intersubband optical properties of dome shaped InAs/GaAs quantum dots with wetting layer. Appl Opt:4176–4185

    Article  CAS  PubMed  Google Scholar 

  • Sahu SK, Maiti S, Pramanik A et al (2012) Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent. Carbohydr Polym 87:2593–2604

    Article  CAS  Google Scholar 

  • Saikia C, Gogoi P, Maji TK (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S4:006

    Article  Google Scholar 

  • Sakamoto H, Watanabe K, Koto A et al (2015) A bienzyme electrochemical biosensor for the detection of collagen l-hydroxyproline. Sens Bio-Sens Res 4:37–39

    Article  Google Scholar 

  • Salva E, Turan SO, Eren F, Akbuga F (2015) The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm 478:147–154

    Article  CAS  PubMed  Google Scholar 

  • Samykutty A, Grizzle WE, Fouts BL et al (2018) Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 182:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2007) Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm 65(2):215–232

    Article  CAS  PubMed  Google Scholar 

  • Schleich N, Sibret P, Danhier P et al (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447:94–101

    Article  CAS  PubMed  Google Scholar 

  • Shah PV, Rajput SJ (2018) Facile synthesis of chitosan capped mesoporous silica nanoparticles: a pH responsive smart delivery platform for raloxifene hydrochloride. AAPS PharmSciTech 19(3):1344–1357

    Article  CAS  PubMed  Google Scholar 

  • Shen JM, Gao FY, Yin T et al (2013) cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res 70:102–115

    Article  CAS  PubMed  Google Scholar 

  • Shkilnyy A, Munnier E, Hervé K et al (2010) Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label. J Phys Chem C 114(13):5850–5858

    Article  CAS  Google Scholar 

  • Si HY, Li DP, Wang TM et al (2010) Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nano Sci Nanotech 10:2325–2331

    Article  CAS  Google Scholar 

  • Soares PIP, Sousa AI, Ferreira IMM et al (2016) Towards the development of multifunctional chitosan-based iron oxide nanoparticles: optimization and modelling of doxorubicin release. Carbohydr Polym 153:212–221

    Article  CAS  PubMed  Google Scholar 

  • Sogias IA, Williams AC, Khutoryanskiy VV (2018) Why is chitosan mucoadhesive? Biomacromolecules 9(7):1837–1842

    Article  CAS  Google Scholar 

  • Song X, Wu H, Li S et al (2015) Ultrasmall chitosan-genipin nanocarriers fabricated from reverse microemulsion process for tumor photothermal therapy in mice. Biomacromolecules 16(7):2080–2090

    Article  CAS  PubMed  Google Scholar 

  • Sood N, Bhardwaj A, Mehta S, Mehta A (2016) Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 23(3):758–780

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan S, Manchanda A, Fernandez-Fernandez A et al (2013) Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents – an in vitro study. J Photochem Photobiol B Biol 119:52–59

    Article  CAS  Google Scholar 

  • Sun G, Xu J, Hagooly A et al (2007) Strategies for optimized radiolabeling of nanoparticles for in vivo PET Imaging. Adv Mater 19(20):315762

    Article  CAS  Google Scholar 

  • Swierczewska M, Han HS, Kim K (2016) Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 99:70–84

    Article  CAS  PubMed  Google Scholar 

  • Szymańska E, Winnicka K (2015) Stability of chitosan – a challenge for pharmaceutical and biomedical applications. Mar Drugs 13(4):1819–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan W, Zhang J, Mi et al (2018) Synthesis, characterization, and evaluation of antifungal and antioxidant properties of cationic chitosan derivative via azide-alkyne click reaction. Int J Biol Macromol 120:318–324

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Sun J, Fan H, Zhang X (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53

    Article  CAS  Google Scholar 

  • Thu B, Bruheim O, Espevik T et al (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Tietze R, Lyer S, Dürr S et al (2013) Efficient drug-delivery using magnetic nanoparticles-biodistribution and therapeutic effects in tumour bearing rabbits. Nanomed Nanotechnol Biol Med 9:961–971

    Article  CAS  Google Scholar 

  • Tietze R, Zaloga J, Unterweger H et al (2015) Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 468:463–470

    Article  CAS  PubMed  Google Scholar 

  • Tiwari A et al (2015) Chitosan-based polyelectrolyte complexes: characteristics and application in formulation of particulate drug carriers. Advanced theranostic materials. Scrivener Publishing

    Google Scholar 

  • Türkoğlu T, Taşcıoğlu S (2014) Novel strategy for the ionotropic crosslinking of chitosan-alginate polyelectrolyte complexes. J Appl Polym Sci 131:40019

    Article  CAS  Google Scholar 

  • Tzaneva D, Simitchiev A, Petkova N et al (2017) Synthesis of carboxymethyl chitosan and its rheological behaviour in pharmaceutical and cosmetic emulsions. J App Pharm Sci 7(10):070–078

    CAS  Google Scholar 

  • Vadlapudi AD, Vadlapatla RK, Mitra AK (2012) Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery. Curr Drug Targets 13:994–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A, Freeze HH, Manzi AE (2009) Overview of glycoconjugate analysis. Curr Protoc Protein Sci 57(1):12.1.1–12.1.10

    Google Scholar 

  • Vaz JM, Michel EC, Chevallier P et al (2014) Covalent grafting of chitosan on plasma-treated polytetrafluoroethylene surfaces for biomedical applications. J Biomater Tissue Eng 4:915–924

    Article  Google Scholar 

  • Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. In: Jennings JA, Bumgardner JD (eds) Chitosan based biomaterials, volume 1: Fundamentals. Woodhead Publishing, Elsevier Ltd., Amsterdam, pp 3–30

    Chapter  Google Scholar 

  • Wang L, Stegemann JP (2010) Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 31(14):3976–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32:1110–1120

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Rao RR, Stegemann JP (2013) Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue. Repair Cells Tissues Organs 197:333–343

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Kievit FM, Sham JG et al (2016a) Iron-oxide-based nanovector for tumor targeted siRNA delivery in an orthotopic hepatocellular carcinoma xenograft mouse model. Small 12:477–487

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chinnasamy T, Lifson M et al (2016b) Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol 34(11):909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner S (2004) Diagnostics + therapy = theranostics. The Scientist 18:38–39

    Google Scholar 

  • Ways TMM, Wing Man Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymer 10:267):1–267)37

    Google Scholar 

  • Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8:586–590

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Zhao N (2016) A targeted nanoprobe based on carbon nanotubes-natural biopolymer chitosan composites. Nanomaterials 6:216

    Article  PubMed Central  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91(4):798–806

    Article  CAS  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011a) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179

    Article  CAS  Google Scholar 

  • Xia Y, Li W, Cobley CM et al (2011b) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie P, Du P, Li J, Liu P (2019) Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging. Carbohydr Polym 205:377–384

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Obodo D, Yadavalli VK (2019) The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 124–125:96–114

    Article  PubMed  CAS  Google Scholar 

  • Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Grailer JJ, Rowland IJ et al (2010) Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 31:9065–9073

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Wang M, Ma L et al (2014) Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier. Carbohydr Polym 99:720–727

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Xu M, Li S et al (2016) Chitosan hybrid nanoparticles as a theranostic platform for targeted DOX/VEGF shRNA co-delivery and dual-modality fluorescence imaging. RSC Adv 6:29685

    Article  CAS  Google Scholar 

  • Yang H, Chen Y, Chen Z et al (2017) Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci 5(5):1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Yhee JY, Son S, Kim SH et al (2014) Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Control Release 193:202–213

    Article  CAS  PubMed  Google Scholar 

  • Yhee JY, Song S, Lee SJ et al (2015) Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 198:1–9

    Article  CAS  PubMed  Google Scholar 

  • Yoon HY, Son S, Lee SJ et al (2014) Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: sequential delivery of doxorubicin and Bcl-2 siRNA. Sci Rep 4:6878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Jiang F, Tang X, Wang B (2018) N-octyl-N-arginine-chitosan micelles for gambogic acid intravenous delivery: characterization, cell uptake, pharmacokinetics, and biodistribution. Drug Dev Ind Pharm 44:615–623

    Article  CAS  PubMed  Google Scholar 

  • Zahraei M, Marciello M, Lazaro-Carrillo A et al (2016) Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology 27(25):255702

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23(13):2641–2648

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ma Y, Xie Y et al (2015) A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep 5:10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Chen H, Liu AY et al (2016) Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–291

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Xu TY, Zhao CX et al (2017) Dynamic self-assembly of gold/polymer nanocomposites: pH-encoded switching between 1D nanowires and 3D nanosponges. Chem Asian J 12:2549–2553

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhai G (2013) Preparation and in vitro and in vivo evaluation of RGD modified curcumin loaded PEG-PLA micelles. J Control Release 172(1):e102

    Article  CAS  Google Scholar 

  • Zhao L, Kim TH, Kim HW et al (2016) Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers. Mater Sci Eng C 67:611–622

    Article  CAS  Google Scholar 

  • Zhao L, Niu L, Liang H et al (2017) pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces 9:37563–37574

    Article  CAS  PubMed  Google Scholar 

  • Zhen F, Peter PF, Hongtao Y et al (2014) Theranostics nano-medicine for cancer detection and treatment. J Food Drug Anal 22:3–17

    Article  CAS  Google Scholar 

  • Zhou Y, Li J, Lu F et al (2015) A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Des Dev Ther 9:2635–2645

    CAS  Google Scholar 

  • Zhu Y, Moran-Mirabal J (2016) Highly bendable and stretchable electrodes based on micro/nanostructured gold films for flexible sensors and electronics. Adv Electron Mater 2(3):1500345

    Article  CAS  Google Scholar 

  • Zhu X, Chian KS, Chan-Park MBE, Lee ST (2005) Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res A 73A:264–274

    Article  CAS  Google Scholar 

  • Zhu W, Song Z, Wei P et al (2015) Y-shaped biotin-conjugated poly (ethylene glycol)–poly (epsilon caprolactone) copolymer for the targeted delivery of curcumin. J Colloid Interface Sci 443:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhuang C, Zhong Y, Zhao Y (2019) Effect of deacetylation degree on properties of chitosan films using electrostatic spraying technique. Food Control 97:25–31

    Article  CAS  Google Scholar 

  • Zivanovic S, Davis RH, Golden DA (2014) Chitosan as an antimicrobial food products. In: Taylor M (ed) Handbook of natural antimicrobials for food safety and quality. Elsevier, Amsterdam, pp 163–179

    Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of Grigore T. Popa University of Medicine and Pharmacy, no. 27499/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Verestiuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balan, V., Malihin, S., Verestiuc, L. (2019). Chitosan-Based Systems for Theranostic Applications. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_12

Download citation

Publish with us

Policies and ethics