Skip to main content

Abiotic Stress and Applications of Omics Approaches to Develop Stress Tolerance in Agronomic Crops

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Abiotic stress is a multifarious factor that mainly affects the growth and yield of crop plants worldwide. Crop production is highly affected by abiotic stresses including drought, water submergence, salt, and heavy metals. The plants have developed various biochemical, physiological, and metabolic mechanisms to fight against different abiotic stresses. In order to get detailed knowledge about these complex molecular systems, we need the development of systems biology approaches, namely genomics, proteomics, transcriptomics, and metabolomics. Each one of the “omics study” has its own importance in developing the stress tolerance in agronomic crops. In order to combat changing environments, plants modify their “omics” profile for their survival. Recent developments in omics technologies provide deep insights into the molecular mechanisms and functions of particular genes and its resulting phenotypes. In recent times, these omic approaches are aimed to understand the molecular interaction and the involvement of signalling networks on abiotic stress plants. This chapter briefs about the involvement of different omics approach in understanding the effect of abiotic stress and the development of stress tolerance in agronomically important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DE:

two-dimensional electrophoresis

APX:

ascorbate peroxidase

CAT:

catalase

CID:

collision-induced dissociation

EMS:

ethyl methane sulphonate

ESI:

electrospray ionization

FTIR:

Fourier transform-infrared spectroscopy

GC-MS:

gas chromatography-mass spectrometry

GPX:

guaiacol peroxidase

GSH:

glutathione

ICAT:

isotope-coded affinity tags

ICPMS:

inductively coupled plasma mass spectrometry

ICPOES:

inductively coupled plasma optical emission spectroscopy

IRT:

infrared thermography

iTRAQ:

isobaric tags for relative and absolute quantification

LC-MS:

liquid chromatography-mass spectrometry

LEAP:

late embryogenesis abundant proteins

MALDI:

matrix-assisted laser desorption ionization

MAS:

marker-assisted selection

MDA:

malondialdehyde

MRI:

magnetic resonance imaging

MS:

mass spectrometry

NAA:

neutron activation analysis

NGS:

next-generation sequencing

NMR:

nuclear magnetic resonance

PET:

positron emission tomography

PiiMS:

Purdue Ionomics Information Management System

QTL:

quantitative trait locus

ROS:

reactive oxygen species

SE:

stem elongation

SILAC:

stable isotope labelling by amino acids in cell culture

SOD:

superoxide dismutase

TCA:

tricarboxylic acid

References

  • Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C (2013) A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. Mass Spectrom Rev 32:335–365

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91

    Article  CAS  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67(6):1182–1193

    Article  CAS  PubMed  Google Scholar 

  • Almodares A, Hadi MR, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7:1492–1495

    Article  Google Scholar 

  • Altangerel N, Ariunbold GO, Gorman C, Alkahtan MH, Borrego EJ, Bohlmeyer D, Hemmer P, Kolomiets MV, Yuan JS, Scully MO (2017) In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc Natl Acad Sci U S A 114:3393–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and water relations in C3 cereals: what should we breed for? Ann Bot London 89:925–940

    Article  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asch F, Dingkuhn M, Sow A, Audebert A (2005) Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crop Res 93:223–236

    Article  Google Scholar 

  • Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut 138(1–4):165–180

    Article  CAS  Google Scholar 

  • Azhiri-Sigari TA, Yamauchi A, Kamoshita A, Wade LJ (2000) Genotypic variation in response of rainfed lowland rice to drought and rewatering. II. Root growth. Plant Prod Sci 3:180–188

    Article  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X, Liu S, Trick M (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29(8):762–766

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Raymond C (2016) Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC Plant Biol 16(1):110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basu U (2012) Identification of molecular processes underlying abiotic stress plants adaptation using “omics” technologies. In: Benkeblia N (ed) Sustainable agriculture and new technologies. CRC Press, Boca Raton, pp 149–172

    Google Scholar 

  • Baxter I (2010) Ionomics: the functional genomics of elements. Brief Funct Genomics 9:149–156

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system (PiiMS): an integrated functional genomics platform. Plant Physiol 143:600–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97(2–3):248–253

    Article  Google Scholar 

  • Bhatt D, Negi M, Sharma P, Saxena SC, Dobriyal AK, Arora S (2011) Responses to drought induced oxidative stress in five finger millet varieties differing in their geographical distribution. Physiol Mol Bio Plants 17:347–353

    Article  CAS  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. In: Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, Dordrecht, pp 57–70

    Chapter  Google Scholar 

  • Boscaiu M, Lull C, Lidon A, Bautista I, Donat P, Mayoral O, Vicente O (2008) Plant responses to abiotic stress in their natural habitats. Bulletin of university of agricultural sciences and veterinary medicine Cluj-Napoca. Horticulture 65:53–58

    Google Scholar 

  • Busch F, Hüner NPA, Ensminger I (2009) Biochemical constrains limit the potential of the photochemical reflectance index as a predictor of effective quantum efficiency of photosynthesis during the winter spring transition in Jack pine seedlings. Funct Plant Biol 36(11):1016

    Article  CAS  PubMed  Google Scholar 

  • Cha-umi S, Supaibulwattana K, Kirdmanee C (2009) Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Sci 16:274–282

    Article  Google Scholar 

  • Chawla K, Barah P, Kuiper M, Bones AM (2011) Systems biology: a promising tool to study abiotic stress responses. Omics and Plant Abiotic Stress Tolerance:163–72

    Google Scholar 

  • Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J (2013) Polyamines and ethylene interact in rice grains in response to soul drying during grain filling. J Exp Bot 64:2523–2538

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LA (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Pandey M, Bisen PS (2011) An omics approach to understand the plant abiotic stress. Omics: J Integr Biol 15(11):739–762

    Article  CAS  Google Scholar 

  • Dias de Oliveira E, Bramley H, Siddique KHM, Henty S, Berger J, Palta JA (2013) Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat. Funct Plant Biol 40:160–171

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German JB, Ridley WP, Seiber JN (2006) Applications of metabolomics in agriculture. J Agri Food Chem 54:8984–8994

    Article  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Biol 48:223–250

    Article  CAS  Google Scholar 

  • Drew MC, Lynch JM (1980) Soil anaerobiosis, microorganisms, and root function. Annu Rev Phytopathol 18:37–66

    Article  CAS  Google Scholar 

  • Du Plessis J (2003) Maize production. Department of Agriculture: 1–38

    Google Scholar 

  • Duque AS, de Almeida AM, da Silva AB, da Silva JM, Farinha AP, Santos D, Fevereiro P, de Sousa Araújo S (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In Abiotic Stress-Plant responses and applications in agriculture. In Tech

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Tre Gen 25(1):39–48

    Article  CAS  Google Scholar 

  • Finkel E (2009) With phenomics, plant scientists hope to shift breeding into overdrive. Science 325:380–381

    Article  CAS  PubMed  Google Scholar 

  • Flagella Z, Pastore D, Campanile RG, Fonzo ND (1994) Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum ) cultivars. J Agri Sci 122:183–192

    Article  CAS  Google Scholar 

  • Fujita Y, Venterink HO, van Bodegom PM, Douma JC, Heil GW, Hölzel N (2013) Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86

    Article  CAS  PubMed  Google Scholar 

  • Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Chawla V, Ahuja PS, Kumar S (2012) De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genomics 13(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium(L.). Planta 231(3):583–594

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi F, Jakeman AJ and Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CAB international

    Google Scholar 

  • Ghobadi ME, Nadian H, Bakhshandeh A, Fathi G, Gharineh MH, Ghobadi M (2007) Effect of waterlogging durations at different growth stages of wheat on yield and yield components. J Agri Sci 30:133–146

    Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2003) Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul 40:157–162

    Article  CAS  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover A, Pental D (2003) Breeding objectives and requirements for producing transgenics for major field crops of India. Curr Sci 84(3):310–320

    Google Scholar 

  • Guo ZF, Ou WZ, Lu SY, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44(11–12):828–836

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V, Kulwal P (2012) Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: status and prospects. Plant Breed Rev 36:85–168

    Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies: 1437–1440

    Google Scholar 

  • Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154(3):1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18(1):200

    Article  PubMed Central  CAS  Google Scholar 

  • Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17(6):767

    Article  PubMed Central  CAS  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS (2017) Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. Physiologia Plantar 161(4):468–485

    Article  CAS  Google Scholar 

  • Hubeau M, Steppe K (2015) Plant-PET scans: in vivo mapping of xylem and phloem functioning. Trends Plant Sci 20(10):676–685

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M, Rose JK (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1(2):769–774

    Article  CAS  PubMed  Google Scholar 

  • Izadi MH, Rabbani J, Emam Y, Pessarakli M, Tahmasebi A (2014) Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutri 37(4):520–531

    Article  CAS  Google Scholar 

  • Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, De Jaeger I, Metzlaff M, Schurr U, Scharr H, Walter A (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36(11):902

    Article  CAS  PubMed  Google Scholar 

  • Ji KX, Wang YY, Sun WN, Lou QJ, Mei HW, Shen SH, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344

    Article  CAS  PubMed  Google Scholar 

  • Jones HG, Stoll M, Santos T, Sousa CD, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Biol 53:2249–2260

    CAS  Google Scholar 

  • Jordan WR, Miller FR (1980) Genetic variability in sorghum root systems. Implications for drought tolerance. Willey, New York, pp 383–399

    Google Scholar 

  • Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390

    Article  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29(7):1220–1234

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan A, Lafitte HR, Chen J, Mansueto L, Bruskiewich R, Bennett J (2006) Gene expression microarrays and their application in drought stress research. Field Crops Res 97(1):101–110

    Article  Google Scholar 

  • Kherbani N, Abdi N, Lounici H (2015) Effect of cadmium and zinc on growing barley. J Env Prot 6(2):160

    Article  CAS  Google Scholar 

  • Kiirats O, Cruz JA, Edwards GE, Kramer DM (2009) Feedback limitation of photosynthesis at highCO2 acts by modulating the activity of the chloroplast ATP synthase. Funct Plant Biol 36:893–901

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteom 74(8):1301–1322

    Article  CAS  Google Scholar 

  • Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusano M, Saito K (2012) Role of metabolomics in crop improvement. J Plant Biochem Biotech 21(1):24–31

    Article  CAS  Google Scholar 

  • Lemoine R, Camera SL, Atanassova R, De De ´dalde ´champ F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-The ´venot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4: 272

    Google Scholar 

  • Liang J, Zhang J, Cao X (2001) Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oriza sativa L.) hybrids. Plant Physiol 112:470–477

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Liu HS, Han JF, Meng FT, Du XT (2001) Effects of several physiological index related to resistance in sesame leaves under waterlogging stress in soil. Plant Physiol Commun 37:106–108

    CAS  Google Scholar 

  • Liu X, Hong L, Li XY, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75:443–450

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Savage LJ, Ajjawi I, Imre KM, Yoder DW, Benning C, Della Penna D, Ohlrogge JB, Osteryoung KW, Weber AP, Wilkerson CG (2008) New connections across pathways and cellular processes: industrialized mutant screening reveals novel associations between diverse phenotypes in Arabidopsis. Plant Physiol 146:1482–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludlow MM, Santamaria JM, Fukai S (1990) Contribution of osmotic adjustment to grain yield of Sorghum bicolor(L.) Moench under water-limited conditions. II. Post-anthesis water stress. Aust J Agric Res 41:67–78

    Article  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39(2):451

    Google Scholar 

  • Marti J, Savin R, Slafer GA (2015) Wheat yield as affected by length of exposure to waterlogging during stem elongation. J Agr Crop Sci 201(6):473–486

    Article  CAS  Google Scholar 

  • Mayaki WC, Stone LR, Teare ID (1976) Irrigated and non irrigated soybean, corn and grain sorghum roots systems. Agron J 68:532–534

    Article  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar S, Baker JL, Kanwar RS (1990) Corn growth as affected by excess soil water. Trans ASAE 33(2):0437–0442

    Article  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(1):651–681

    Article  CAS  PubMed  Google Scholar 

  • Musgrave ME, Ding N (1998) Evaluating wheat cultivars for waterlogging tolerance. Crop Sci 38(1):90–97

    Article  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M (2017a) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci 8:759

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Pandian S, Ramesh M (2017b) Emerging trends on abiotic stress tolerance investigation in crop plants. Adv Biotechnol Microbiol 6(1):1–2

    Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr opin plant boil 24:10–16

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA (2013) Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res 151:284–293

    Article  CAS  PubMed  Google Scholar 

  • Pannar (2012) Quality seed, know the maize plant. Pannar Seeds, Private Limited

    Google Scholar 

  • Patane C, Saita A, Sortino O (2012) Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J Agron Crop Sci 199(1):30–37

    Article  Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195(1):30–46

    Article  Google Scholar 

  • Promkhambut A, Younger A, Polthanee A, Akkasaeng C (2010) Morphological and physiological responses of sorghum (Sorghum bicolor L.) Moench to waterlogging. Asian J Plant Sci 9:183–193

    Article  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295

    Article  Google Scholar 

  • Qiu GY, Omasa K, Sase S (2009) An infrared-based coefficient to screen plant environmental stress:concept, test and applications. Funct Plant Biol 36:990–997

    Article  PubMed  Google Scholar 

  • Rao R, Li Y (2003) Management of flooding effects on growth of vegetable and selected field crops. HortTechnology 13(4):610–616

    Article  Google Scholar 

  • Ren BZ, Zhang JW, Dong ST, Liu P, Zhao B (2016) Root and shoot responses of summer maize to waterlogging at different stages. Agron J 108:1060–1069

    Article  Google Scholar 

  • Resham S, Akhter F, Ashraf M, Kazi AG (2014) Metabolomics role in crop improvement. In Emerging Technologies and Management of Crop Stress Tolerance, Volume 1: 39–55

    Google Scholar 

  • Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64(5):1193–1208

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36(1):1–9

    Article  CAS  Google Scholar 

  • Roostaei M, Mohammadi SA, Amri A, Majidi E, Nachit M, Haghparast R (2011) Chlorophyll fluorescence parameters and drought tolerance in a mapping population of winter bread wheat in the highlands of Iran. Russ J Plant Physiol 58:351–358

    Article  CAS  Google Scholar 

  • Rosenzweig C, Tubiello FN, Goldberg R, Mills E, Bloomfield J (2002) Increased crop damage in the US from excess precipitation under climate change. Glob Environ Chang 12(3):197–202

    Article  Google Scholar 

  • Rungra T, Awlia M, Brown T, Cheng R, Sirault X, Fajkus J, Trtilek M, Furbank B, Badge M, Tester M, Pogson BJ (2016) Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. Arabidopsis Book:e0185

    Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6(4):263–284

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sanchez D, Garcia J, Antolin M (2002) Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable carbon isotope composition of barley. Photosynthetica 40(3):415–421

    Article  Google Scholar 

  • Satish L, Rathinapriya P, Rency AS, Ceasar SA, Prathibha M, Pandian S, Rameshkumar R, Ramesh M (2016) Effect of salinity stress on finger millet (Eleusine coracana L. Gaertn): histochemical and morphological analysis of coleoptile and coleorhizae. Flora 222:111–120

    Article  Google Scholar 

  • Satismruti K, Senthi N, Vellaikumar S, Ranjan RV, Raveendran M (2013) Plant Ionomics: a platform for identifying novel gene regulating plant mineral nutrition. Ame J Plant Sci 4:1309–1315

    Article  CAS  Google Scholar 

  • Sayfzadeh S, Rashidi M (2011) Response of antioxidant enzymes activities of sugar beet to drought stress. J Agr Biol Sci 6:27–33

    Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24(4):447

    Article  CAS  PubMed  Google Scholar 

  • Sergey S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190:289–298

    Article  CAS  Google Scholar 

  • Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, Yaduvanshi NPS, Ram PC, Singh BN, Rane J, McDonal G (2009) Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Sharma DP, Swarup A (1988) Effect of short term waterlogging on growth, yield and mineral composition of wheat in sodic soil under field conditions. Plant Soil 107:137–143

    Article  CAS  Google Scholar 

  • Shinozaki K, Dennis ES (2003) Cell signalling and gene regulation: global analyses of signal transduction and gene expression profiles. Curr Opin Plant Boil 6(5):405

    Article  CAS  Google Scholar 

  • Siebke K, Ball MC (2009) Non-destructive measurement of chlorophyll b: a ratios and identification of photosynthetic pathways in grasses by reflectance spectroscopy. Funct Plant Biol 36:857–866

    Article  CAS  PubMed  Google Scholar 

  • Sirault XR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36:970–977

    Article  CAS  PubMed  Google Scholar 

  • Stieger PA, Feller U (1994) Nutrient accumulation and translocation in maturing wheat plants grown on waterlogging soil. Plant Soil 160:87–95

    Article  CAS  Google Scholar 

  • Surwenshi A, Chimmad VP, Jalageri BR, Kumar V, Ganapathi M, Nakul HT (2010) Characterization of sorghum genotypes for physiological parameters and yield under receding soil moisture conditions. Res J Agric Sci 1:242–244

    Google Scholar 

  • Swami AK, Alam SI, Sengupta NandSarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    Article  CAS  Google Scholar 

  • Tai FJ, Yuan ZL, Wu XL, Zhao PF, Hu XL, Wang W (2011) Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. Plant Omics J 4:250–256

    CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  Google Scholar 

  • Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu XJ (2013) De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genomics 14(1):827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari U, Agnihotri RK, Shrotriya S, Sharma R (2013) Effect of lead nitrate induced heavy metal toxicity on some biochemical constituents of wheat (Triticum aestivum L). Res J Agri Sci 4(2):283–285

    Google Scholar 

  • Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1(1):32–39

    Article  PubMed  Google Scholar 

  • Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice (Oryzasativa L.) under drought stress. Theor Appl Genet 100(8):1197–1202

    Article  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ and Exp Bot 67(1):2–9

    Article  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Plant Biotechnol 17:113–122

    Article  CAS  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vandenbroucke K, Metzlaff M (2013) Abiotic stress tolerant crops: genes, pathways and bottlenecks. In Sustainable Food Production Springer New York: 1–17

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwa LM, Katiyar AS, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Wedeking R, Mahlein AK, Steiner U, Oerke EC, Goldbach HE, Wimmer MA (2017) Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography. Funct Plant Biol 44:119–133

    Article  CAS  Google Scholar 

  • Wei L, Zhang D, Xiang F, Zhang Z (2009) Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci 170:979–989

    Article  CAS  Google Scholar 

  • Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang G (2013) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physio l54:1976–1988

    Article  CAS  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Dai QJ, Leu XZ, Huang SB, Wang ZX (1996) Flooding induced membrane damage lipid oxidation and active oxygen generation in corn leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS (2001) Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52:2169–2179

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S (2013) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14(1):664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue B, Xue WY, Xiong LZ, Yu XQ, Luo LJ, Cui KH, Jin DM, Xing YZ, Zhang QF (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author S. Pandian (UGC order no: F.25-1/2014-15 (BSR)/7-326/2011/BSR) thank the University Grants Commission, New Delhi, India, for financial support in the form of fellowship. The authors sincerely acknowledge the computational and bioinformatics facility provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by DBT, GOI; File No. BT/BI/25/012/2012, BIF). The authors also thankfully acknowledge DST-FIST (grant no. SR/FST/LSI-639/2015(C)), UGC-SAP (grant no. F.5-1/2018/DRS-II(SAP-II)), and DST-PURSE (grant no. SR/PURSE Phase 2/38 (G)) for providing instrumentation facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandian, S., Rakkammal, K., Sagina Rency, A., Muthuramalingam, P., Karutha Pandian, S., Ramesh, M. (2020). Abiotic Stress and Applications of Omics Approaches to Develop Stress Tolerance in Agronomic Crops. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_26

Download citation

Publish with us

Policies and ethics