Skip to main content

Soil Management Practices of Major Crops in the United States and Their Potential for Carbon Sequestration

  • Chapter
  • First Online:
Carbon Management in Tropical and Sub-Tropical Terrestrial Systems

Abstract

Although the United States has no areas considered strictly tropical, there are subtropical and warm humid regions in the south where agricultural production is high. Practices in these regions, and the results of research on their effects towards carbon sequestration in soils, are certainly transferable to tropical regions. Soil management (e.g., tillage and amendment) and crop management (e.g., cropping system and cover crops) practices in the United States (with emphasis on the southern region) as well as new technologies and advances are covered in this chapter. Regulatory pathways for increasing carbon stores in managed agricultural lands in the United States are unlikely; therefore, willingness on the part of farmers to adopt practices aligned with C sequestration goals must be engendered. Reduced tillage and cover crop inclusion are being adopted more commonly in the United States. Reuse of organic waste materials for the benefit of agricultural production is also increasing. Breeding for greater or more stable root mass, and new methods for monitoring the flux of C from the soil to the atmosphere both represent exciting frontiers of discovery in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldock JA (2007) Composition and cycling of organic carbon in soil. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Soil biology, vol 10. Springer, Berlin/Heidelberg, pp 1–35

    Google Scholar 

  • Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63(18):6309–6314

    Article  CAS  Google Scholar 

  • Bayuelo-Jime’nez JS, Gallardo-Valde’z M, Pe’rez-Decelis VA, Magdaleno-Armas L, Ochoa I, Lynch JP (2011) Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crop Res 121:350–362

    Article  Google Scholar 

  • Benfey PN, Bennett M, Schiefelbein J (2010) Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant J 61:992–1000

    Article  CAS  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Bio 16(12):727–741

    Article  CAS  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15(4):808–824

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) Soil organic matter in: the nature and properties of soils. Prentice Hall, Upper Saddle River, pp 501–522

    Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci 107:12052–12057

    Article  CAS  Google Scholar 

  • Chu M, Jagadamma S, Walker FR, Eash NS, Buschermohle MJ, Duncan LA (2017) Effect of multispecies cover crop mixture on soil properties and crop yield. Agric Environ Let 2(1). https://doi.org/10.2134/ael2017.09.0030

    Article  Google Scholar 

  • Collins HP, Smith JL, Fransen S, Alva AK, Kruger CE, Granatstein DM (2010) Carbon sequestration under irrigated switchgrass (Panicum virgatum L.) production. Soil Sci Soc Am J 74:2049–2058

    Article  CAS  Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–335

    Article  Google Scholar 

  • Coudert Y, Perin C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  CAS  Google Scholar 

  • Dell CJ, Gollany HT, Adler PR, Skinner RH, Polumsky W (2017) Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations. J Environ Qual 47:617–624

    Article  CAS  Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzi MD, Jones DL (2015) Biochar effects on soil nutrient transformation. Biochar Environ Manag Sci Tech Impl 2:421–454

    Google Scholar 

  • Dick WA, Blevins RL, Frye WW (1998) Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt. Soil Tillage Res 47:235–244

    Article  Google Scholar 

  • Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18(6):1781–1796

    Article  Google Scholar 

  • Faulkner EH (1942) Plowman’s folly. The University of Oklahoma Press, Norman, p 155

    Google Scholar 

  • Fort A, Ryder P, McKeown PC, Wijnen C, Aarts MG, Sulpice R (2016) Disaggregating polyploidy, parental genomedosage and hybridity contributions to heterosis in Arabidopsis thaliana. New Phytol 209(2):590–599

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Hons FM, Zuberer DA (1995) Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Sci Soc Am J 59:460. https://doi.org/10.2136/sssaj1995.03615995005900020027x

    Article  CAS  Google Scholar 

  • Galdos MV, Cerri CC, Lal R, Bernoux M, Feigl B, Cerri CEP (2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. Global Change Biol Bioener 2:37–44

    Article  CAS  Google Scholar 

  • Glaser B, Parr M, Braun C, Kopolo G (2009) Biochar is carbon negative. Nat Geosci 2(1):2

    Article  CAS  Google Scholar 

  • Govindasamy P, Mowrer J, Provin T, Hons F, Bagavathiannan M (2017) Long-term (35 years) no-till system caused a major shift in weed community structure in a continuous sorghum cropping system, ASA, Florida

    Google Scholar 

  • Haque MM, Kim SY, Kim GW, Kim PJ (2015) Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system. Agric Ecosyst Environ 207:119–125

    Article  CAS  Google Scholar 

  • Havlin JL, Kissel DE, Maddux LD, Claassen MM, Long JH (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:448–452. https://doi.org/10.2136/sssaj1990.03615995005400020026x

    Article  Google Scholar 

  • Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69:188. https://doi.org/10.2136/sssaj2005.0188

    Article  CAS  Google Scholar 

  • Hu FY, Tao DY, Sacks E (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci 100:4050–4054

    Article  CAS  Google Scholar 

  • Hubbard RK, Strickland TC, Phatak S (2013) Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil Tillage Res 126:276–283

    Article  Google Scholar 

  • Hund A, Richner W, Soldati A, van Fracheboud Y, Stamp P (2007) Root morphology and photosynthetic performance of maize inbred lines at low temperature. Eur J Agron 27:52–61

    Article  Google Scholar 

  • IPCC (2014) Change, intergovernmental panel on climate change IPOC. Climate change

    Google Scholar 

  • Jarecki MK, Lal R, James R (2005) Crop management effects on soil carbon sequestration on selected farmer field in northern Ohio. Soil Tillage Res 81:265–276

    Article  Google Scholar 

  • Jia XY, Shen J, Liu H, Li F, Ding N, Gao CY (2015) Small tandem target mimic-mediated blockage of microRNA858induces anthocyanin accumulation in tomato. Planta 242(1):283–293

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kaspar TC, Parkin TB, Jaynes DB, Cambardella CA, Meek DW, Jung YS (2006) Examining changes in soil organic carbon with oat and rye cover crops using terrain covariates. Soil Sci Soc Am J 70(4):1168–1177

    Article  CAS  Google Scholar 

  • Kassam A, Derpsch R, Friedrich T (2014) Global achievements in soil and water conservation: the case of conservation agriculture. Inter Soil Water Conserv Res 2:5–13. https://doi.org/10.1016/S2095-6339(15)30009-5

    Article  Google Scholar 

  • Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117–129

    Article  CAS  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141(1–2):184–192

    Article  Google Scholar 

  • Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos Trans R Soc B 367:1589–1597

    Article  CAS  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7(4):320–332

    Article  CAS  Google Scholar 

  • Kuo S, Sainju UM, Jellum EJ (1997) Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Sci Soc Am J 61(1):145–152

    Article  CAS  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  CAS  Google Scholar 

  • Lal R, Griffin M, Apt J, Lave L, Morgan MG (2004) Managing soil carbon. Science 304:393. https://doi.org/10.1126/science.1093079

    Article  CAS  Google Scholar 

  • Lee DK, Owens VN, Doolittle JJ (2007) Switchgrass and soil carbon sequestration response to ammonium nitrate, manure, and harvest frequency on conservation reserve program land. Agron J 99(2):462–468

    Article  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA, Fryer M (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447(7141):143

    Article  CAS  Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  • Liu DG, Hu RB, Pall KJ, Tuskan GA, Yang XH (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77

    Article  CAS  Google Scholar 

  • Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L, Yeh TF (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci 110(26):10848–10853

    Article  CAS  Google Scholar 

  • Lucas RE, Holtman JB, Connor LJ (1977) Soil carbon and cropping practices. In: Lockeretz W (ed) Agriculture and energy. Academic, New York, pp 333–351

    Chapter  Google Scholar 

  • Miller M, Zhang CQ, Chen ZJ (2012) Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents G3-Genes. Genomes Genetic 2(4):505–513

    CAS  Google Scholar 

  • Minasny B, Malone BP, Mcbratney AB, Angers DA, Arrouay D, Chambers A, Chaplot V, Chen ZS, Cheng K, Das BS, Field DJ (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Mirsky SB, Curran WS, Mortenseny DM, Ryany MR, Shumway DL (2011) Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci 59(3):380–389

    Article  CAS  Google Scholar 

  • Mitchell CC, Entry JA (1998) Soil C, N and crop yields in Alabama’s long-term ‘Old Rotation’ cotton experiment. Soil Tillage Res 47:331–338

    Article  Google Scholar 

  • Mullen MD, Melhorn CG, Tyler DD, Duck BN (1998) Biological and biochemical soil properties in no-till corn with different cover crops. J Soil Water Conserv 53(3):219–224

    Google Scholar 

  • NASS (2012) Census of agriculture. U.S. National Level Data. National Agricultural Statistics Service. https://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_State_Level/

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51(5):1173–1179

    Article  CAS  Google Scholar 

  • Paustian K, André O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Noordwijk M, Woomer PL (1997) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–244. https://doi.org/10.1111/j.1475-2743.1997.tb00594.x

    Article  Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric Ecosyst Environ 200:33–41

    Article  CAS  Google Scholar 

  • Poll C, Marhan S, Back F, Niklaus PA, Kandeler E (2013) Field-scale manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem. Agric Ecosyst Environ 165:88–97

    Article  CAS  Google Scholar 

  • Potter KN, Torbert HA, Jones OR, Matocha JE, Morrison JE, Unger PW (1998) Distribution and amount of soil organic C in long-term management systems in Texas. Soil Tillage Res 47:309–321

    Article  Google Scholar 

  • Prior SA, Torbert HA, Runion GB, Rogers HH, Wood CW, Kimball BA, LaMorte RL, Pinter PJ, Wall GW (1997) Free-air carbon dioxide enrichment of wheat: soil carbon and nitrogen dynamics. J Environ Qual 26:1161. https://doi.org/10.2134/jeq1997.00472425002600040031x

    Article  CAS  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43(1–2):131–167

    Article  Google Scholar 

  • Reicosky DC, Forcella F (1998) Cover crop and soil quality interactions in agroecosystems. J Soil Water Conserv 53(3):224–229

    Google Scholar 

  • Rubinelli PM, Chuck G, Li X, Meilan R (2013) Constitutive expression of the Corngrass1 micro RNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenergy 54:312–321

    Article  CAS  Google Scholar 

  • Ruis SJ, Blanco-Canqui H (2017) Cover crops could offset crop residue removal effects on soil carbon and other properties: a review. Agron J 109(5):1785–1805

    Article  CAS  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Sharma S, Rajan N, Maas S (2014) Measurement of soil carbon dioxide emission from a cotton cropping system using LI-8100. Abstracts, ASA-CSSA-SSSA annual meeting, November 2–5, Long Beach, CA

    Google Scholar 

  • Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK (2016) MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiol 171(2):944–959

    CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol 22(3):1315–1324

    Article  Google Scholar 

  • Smith, RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L (2013) Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25, pp 113

    Article  CAS  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genetic 112:208–221

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Organic matter in soils: pools, distribution transformation, and function. Humus chemistry: genesis, composition, reactions. Wiley, New York, pp 1–23

    Google Scholar 

  • Trost B, Prochnow A, Drastig K, Meyer-Aurich A, Ellmer F, Baumecker M (2013) Irrigation, soil organic carbon and N2O emissions. A review. Agron Sustain Dev 33(4):733–749

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Giuliani S (2010) Genomics of root architecture and functions in maize. In: Costa de Oliveira A, Varshney RK (eds) Root genomics. Heidelberg: Springer, pp 179–204

    Google Scholar 

  • Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation pulses on soil respiration–assessing the ‘Birch effect’ by stable carbon isotopes. Soil Biol Biochem 42(10):1800–1810

    Article  CAS  Google Scholar 

  • USDA (2012) Census of agriculture, highlights. Department of Agriculture, Washington, DC, p 2

    Google Scholar 

  • Ussiri DAN, Lal R (2009) Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res 104:39–47

    Article  Google Scholar 

  • Wade T, Claassen R, Wallander S (2015) Conservation practice adoption rates vary widely by crop and region, EIB-147. US Department of Agriculture-Economic Research Service, Washington, DC https://www.ers.usda.gov/webdocs/publications/eib147/56332_eib147.pdf

  • Wiesmeier M, Poeplau C, Sierra CA, Maier H, Frühauf C, Hübner R, Kühnel A, Spörlein P, Geuß U, Hangen E, Schilling B (2016) Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Sci Report 6:32525

    Article  CAS  Google Scholar 

  • Wilhelm WW, Johnson JMF, Hatfield JL (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96:1–17

    Article  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  CAS  Google Scholar 

  • Wright AL, Hons FM (2005) Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences. Soil Tillage Res 84:67–75

    Article  Google Scholar 

  • Zapata DM, Hons F, Rajan N (2016) Comparing the carbon sequestration potential of winter wheat under conventional and no-till systems. Poster presentation at the 2016 ASA, CSSA & SSSA international annual meetings, November 6th – 9th, Phoenix (AZ)

    Google Scholar 

  • Zapata D, Rajan N, Hons FM (2017) Does high soil moisture in no-till systems increase CO2 emissions and reduce carbon sequestration? Abstracts, ASA-CSSA-SSSA international annual meetings, October 22–25, Tampa, FL

    Google Scholar 

  • Zhu JJ, Song N, Sun SL, Yang WL, Zhao HM, Son WB (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genetic Genomic 43(1):25–36

    Article  Google Scholar 

  • Zielke RC, Christenson DR (1986) Organic carbon and nitrogen changes in soil under selected cropping systems. Soil Sci Soc Am J 50:363–367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake Mowrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mowrer, J. et al. (2020). Soil Management Practices of Major Crops in the United States and Their Potential for Carbon Sequestration. In: Ghosh, P., Mahanta, S., Mandal, D., Mandal, B., Ramakrishnan, S. (eds) Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9628-1_5

Download citation

Publish with us

Policies and ethics