Skip to main content

QuEChERS—A Green Alternative Approach for the Determination of Pharmaceuticals and Personal Care Products in Environmental and Food Samples

  • Chapter
  • First Online:
Green Analytical Chemistry

Abstract

The widespread environmental distribution of pharmaceuticals and personal care products (PPCPs) is well-recognized, and the number of recent studies reflects the continuing interest and high level of research activity on the presence of PPCPs in the environment and food. In order to quantify their low environmental levels, sensitive and selective analytical methodologies are required. Recently, significant effort has gone into determining their concentrations in environmental matrices, with special attention to environment-friendly practices and the development of so-called Green Analytical Chemistry (GAC) methods. GAC is one of the most active areas of research and development in Green Chemistry and represents a real challenge for environmental analytical chemists. Its objective is the introduction of new techniques and methodologies able to minimize the environmental and occupational hazards involved in all stages of chemical analysis, allowing faster and more energy-efficient methods without compromising performance criteria. To accomplish the goal of GAC, the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was introduced. As a result of the inherent advantages of the QuEChERS having “Green Chemistry” characteristics, the method has expanded rapidly to include the extraction of different groups of contaminants from various matrices and emerged as a green alternative to traditional sample preparation steps. This chapter deals with the application of the QuEChERS approach as a “green” sample preparation technique for determining PPCPs residues in environmental and food matrices and highlights major trends in its development. A brief explanation of the analytical technique used is provided together with a discussion of the experimental features of the studies reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 181:204–209. https://doi.org/10.1016/j.talanta.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  2. Armenta S, Garrigues S, de la Guardia M (2015) The role of green extraction techniques in Green Analytical Chemistry. TrAC - Trends Anal Chem 71:2–8. https://doi.org/10.1016/j.trac.2014.12.011

    Article  CAS  Google Scholar 

  3. Haimovici L, Reiner EJ, Besevic S, Jobst KJ, Robson M, Kolic T, MacPherson K (2016) A modified QuEChERS approach for the screening of dioxins and furans in sediments. Anal Bioanal Chem 408:4043–4054. https://doi.org/10.1007/s00216-016-9493-0

    Article  CAS  PubMed  Google Scholar 

  4. Anastas PT (1999) Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175. https://doi.org/10.1080/10408349891199356

    Article  CAS  Google Scholar 

  5. Hashemi B, Zohrabi P, Dehdashtian S (2018) Application of green solvents as sorbent modifiers in sorptive-based extraction techniques for extraction of environmental pollutants. TrAC - Trends Anal Chem 109:50–61. https://doi.org/10.1016/j.trac.2018.09.026

    Article  CAS  Google Scholar 

  6. de la Guardia M, Garrigues S (2014) The social responsibility of environmental analysis. Trends Environ Anal Chem 3–4:7–13. https://doi.org/10.1016/J.TEAC.2014.09.001

    Article  Google Scholar 

  7. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010

    Article  CAS  Google Scholar 

  8. Herrero M, Sánchez-Camargo A del P, Cifuentes A, Ibáñez E (2015) Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC - Trends Anal Chem 71:26–38. https://doi.org/10.1016/j.trac.2015.01.018

    Article  CAS  Google Scholar 

  9. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72. https://doi.org/10.1016/J.TRAC.2012.03.013

    Article  Google Scholar 

  10. Sørensen L, Silva MS, Meier S, Booth AM (2015) Advances in miniaturization and increasing sensitivity in analysis of organic contaminants in marine biota samples. Trends Environ Anal Chem 6–7:39–47. https://doi.org/10.1016/J.TEAC.2015.03.001

    Article  Google Scholar 

  11. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431. https://doi.org/10.1371/journal.pone.0029268

    Article  CAS  PubMed  Google Scholar 

  12. Anastassiades M, Lehotay SJ et al (2002) Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) approach for the determination of pesticide residues. Eur. Pestic. Residues Work. EPRW, Rome B. Abstr. QuEChERS. http://quechers.cvua-stuttgart.de/

  13. Carmona E, Andreu V, Picó Y (2017) Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia River as case study. J Pharm Biomed Anal 146:117–125. https://doi.org/10.1016/j.jpba.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  14. Miossec C, Lanceleur L, Monperrus M (2018) Adaptation and validation of QuEChERS method for the simultaneous analysis of priority and emerging pollutants in sediments by gas chromatography—mass spectrometry. Int J Environ Anal Chem 98:695–708. https://doi.org/10.1080/03067319.2018.1496245

    Article  CAS  Google Scholar 

  15. Marta-Sanchez AV, Caldas SS, Schneider A, Cardoso SMVS, Primel EG (2018) Trace analysis of parabens preservatives in drinking water treatment sludge, treated, and mineral water samples. Environ Sci Pollut Res 25:14460–14470. https://doi.org/10.1007/s11356-018-1583-4

    Article  CAS  Google Scholar 

  16. Kachhawaha AS, Nagarnaik PM, Jadhav M, Pudale A, Labhasetwar PK, Banerjee K (2017) Optimization of a modified QuEChERS method for multiresidue analysis of pharmaceuticals and personal care products in sewage and surface water by LC-MS/MS. J AOAC Int 100:592–597. https://doi.org/10.5740/jaoacint.17-0060

    Article  CAS  PubMed  Google Scholar 

  17. Ferhi S, Bourdat-Deschamps M, Daudin J-J, Houot S, Nélieu S (2016) Factors influencing the extraction of pharmaceuticals from sewage sludge and soil: an experimental design approach. Anal Bioanal Chem 408:6153–6168. https://doi.org/10.1007/s00216-016-9725-3

    Article  CAS  PubMed  Google Scholar 

  18. Giebułtowicz J, Nałecz-Jawecki G (2016) Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland). Chemosphere 148:137–147. https://doi.org/10.1016/j.chemosphere.2015.12.135

    Article  CAS  PubMed  Google Scholar 

  19. Ferro G, Polo-López MI, Martínez-Piernas AB, Fernández-Ibáñez P, Agüera A, Rizzo L (2015) Cross-contamination of residual emerging contaminants and antibiotic resistant bacteria in lettuce crops and soil irrigated with wastewater treated by sunlight/H2O2. Environ Sci Technol 49:11096–11104. https://doi.org/10.1021/acs.est.5b02613

    Article  CAS  PubMed  Google Scholar 

  20. Santos LHMLM, Ramalhosa MJ, Ferreira M, Delerue-Matos C (2016) Development of a modified acetonitrile-based extraction procedure followed by ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of psychiatric drugs in sediments. J Chromatogr A 1437:37–48. https://doi.org/10.1016/j.chroma.2016.01.079

    Article  CAS  PubMed  Google Scholar 

  21. Homem V, Magalhães I, Alves A, Santos L (2017) Assessing seasonal variation of synthetic musks in beach sands from Oporto coastal area: a case study. Environ Pollut 226:190–197. https://doi.org/10.1016/j.envpol.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  22. Martínez-Piernas AB, Plaza-Bolaños P, García-Gómez E, Fernández-Ibáñez P, Agüera A (2018) Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: target and suspect approaches. Anal Chim Acta 1030:115–124. https://doi.org/10.1016/j.aca.2018.05.049

    Article  CAS  PubMed  Google Scholar 

  23. Rossini D, Ciofi L, Ancillotti C, Checchini L, Bruzzoniti MC, Rivoira L, Fibbi D, Orlandini S, Del Bubba M (2016) Innovative combination of QuEChERS extraction with on-line solid-phase extract purification and pre-concentration, followed by liquid chromatography-tandem mass spectrometry for the determination of non-steroidal anti-inflammatory drugs and their metabolites in sewage sludge. Anal Chim Acta 935:269–281. https://doi.org/10.1016/j.aca.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  24. Arias JL de O, Schneider A, Batista-Andrade JA, Vieira AA, Caldas SS, Primel EG (2018) Chitosan from shrimp shells: A renewable sorbent applied to the clean-up step of the QuEChERS method in order to determine multi-residues of veterinary drugs in different types of milk. Food Chem 240:1243–1253. https://doi.org/10.1016/j.foodchem.2017.08.041

    Article  CAS  PubMed  Google Scholar 

  25. Jia W, Shi L, Chu X, Chang J, Chen Y, Zhang F (2018) A strategy for untargeted screening of macrolides and metabolites in bass by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Food Chem 262:110–117. https://doi.org/10.1016/j.foodchem.2018.04.090

    Article  CAS  PubMed  Google Scholar 

  26. López-García M, Romero-González R, Garrido Frenich A (2018) Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography—Orbitrap high resolution mass spectrometry. J Chromatogr A 1540:21–30. https://doi.org/10.1016/j.chroma.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  27. Alcántara-Durán J, Moreno-González D, Gilbert-López B, Molina-Díaz A, García-Reyes JF (2018) Matrix-effect free multi-residue analysis of veterinary drugs in food samples of animal origin by nanoflow liquid chromatography high resolution mass spectrometry. Food Chem 245:29–38. https://doi.org/10.1016/j.foodchem.2017.10.083

    Article  CAS  PubMed  Google Scholar 

  28. Vela-Soria F, Iribarne-Durán LM, Mustieles V, Jiménez-Díaz I, Fernández MF, Olea N (2018) QuEChERS and ultra-high performance liquid chromatography–tandem mass spectrometry method for the determination of parabens and ultraviolet filters in human milk samples. J Chromatogr A 1546:1–9. https://doi.org/10.1016/j.chroma.2018.02.060

    Article  CAS  PubMed  Google Scholar 

  29. Jia W, Shi L, Chu X (2018) Untargeted screening of sulfonamides and their metabolites in salmon using liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Chem 239:427–433. https://doi.org/10.1016/j.foodchem.2017.06.143

    Article  CAS  PubMed  Google Scholar 

  30. Paíga P, Rodrigues MJE, Correia M, Amaral JS, Oliveira MBPP, Delerue-matos C (2017) Analysis of pharmaceutical adulterants in plant food supplements by UHPLC-MS/MS. Eur J Pharm Sci 99:219–227. https://doi.org/10.1016/j.ejps.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  31. Lin YP, Lee YL, Hung CY, Huang WJ, Lin SC (2017) Determination of multiresidue analysis of β-agonists in muscle and viscera using liquid chromatograph/tandem mass spectrometry with Quick, Easy, Cheap, Effective, Rugged, and Safe methodologies. J Food Drug Anal 25:275–284. https://doi.org/10.1016/j.jfda.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  32. Jin Y, Zhang J, Zhao W, Zhang W, Wang L, Zhou J, Li Y (2017) Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography–tandem mass spectrometry. Food Chem 221:1298–1307. https://doi.org/10.1016/j.foodchem.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  33. Zhao F, Gao X, Tang Z, Luo X, Wu M, Xu J, Fu X (2017) Development of a simple multi-residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J Chromatogr, B: Anal Technol Biomed Life Sci 1065–1066:20–28. https://doi.org/10.1016/j.jchromb.2017.09.013

    Article  CAS  Google Scholar 

  34. Konak Üİ, Certel M, Şık B, Tongur T (2017) Development of an analysis method for determination of sulfonamides and their five acetylated metabolites in baby foods by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (Orbitrap-MS). J Chromatogr B 1057:81–91. https://doi.org/10.1016/j.jchromb.2017.04.050

    Article  CAS  Google Scholar 

  35. Zhang Z, Wu Y, Li X, Wang Y, Li H, Fu Q, Shan Y, Liu T, Xia X (2017) Multi-class method for the determination of nitroimidazoles, nitrofurans, and chloramphenicol in chicken muscle and egg by dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem 217:182–190. https://doi.org/10.1016/j.foodchem.2016.08.097

    Article  CAS  PubMed  Google Scholar 

  36. Serra-Compte A, Álvarez-Muñoz D, Rodríguez-Mozaz S, Barceló D (2017) Multi-residue method for the determination of antibiotics and some of their metabolites in seafood. Food Chem Toxicol 104:3–13. https://doi.org/10.1016/j.fct.2016.11.031

    Article  CAS  PubMed  Google Scholar 

  37. Chen Q, Pan XD, Huang BF, Han JL (2017) Quantification of 16 β-lactams in chicken muscle by QuEChERS extraction and UPLC-Q-Orbitrap-MS with parallel reaction monitoring. J Pharm Biomed Anal 145:525–530. https://doi.org/10.1016/j.jpba.2017.07.019

    Article  CAS  PubMed  Google Scholar 

  38. He K, Timm A, Blaney L (2017) Simultaneous determination of UV-filters and estrogens in aquatic invertebrates by modified quick, easy, cheap, effective, rugged, and safe extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A 1509:91–101. https://doi.org/10.1016/j.chroma.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  39. Shendy AH, Al-Ghobashy MA, Gad Alla SA, Lotfy HM (2016) Development and validation of a modified QuEChERS protocol coupled to LC–MS/MS for simultaneous determination of multi-class antibiotic residues in honey. Food Chem 190:982–989. https://doi.org/10.1016/j.foodchem.2015.06.048

    Article  CAS  PubMed  Google Scholar 

  40. Munaretto JS, May MM, Saibt N, Zanella R (2016) Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition. J Chromatogr A 1456:205–216. https://doi.org/10.1016/j.chroma.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  41. Pérez-Ortega P, Lara-ortega FJ, García-Reyes JF, Gilbert-López B, Trojanowicz M, Molina-Díaz A (2016) A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food. Talanta 160:704–712. https://doi.org/10.1016/j.talanta.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  42. Rúbies A, Guo L, Centrich F, Granados M (2016) Analysis of non-steroidal anti-inflammatory drugs in milk using QuEChERS and liquid chromatography coupled to mass spectrometry: triple quadrupole versus Q-Orbitrap mass analyzers. Anal Bioanal Chem 408:5769–5778. https://doi.org/10.1007/s00216-016-9679-5

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Liu X, Li X, Zhang J, Cao Y, Su M, Shi Z, Sun H (2016) Rapid screening and quantification of multi-class multi-residue veterinary drugs in royal jelly by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Control 60:667–676. https://doi.org/10.1016/j.foodcont.2015.09.010

    Article  CAS  Google Scholar 

  44. León N, Pastor A, Yusà V (2016) Target analysis and retrospective screening of veterinary drugs, ergot alkaloids, plant toxins and other undesirable substances in feed using liquid chromatography–high resolution mass spectrometry. Talanta 149:43–52. https://doi.org/10.1016/j.talanta.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  45. Baduel C, Mueller JF, Tsai H, Gomez Ramos MJ (2015) Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices. J Chromatogr A 1426:33–47. https://doi.org/10.1016/j.chroma.2015.11.040

    Article  CAS  PubMed  Google Scholar 

  46. Kung T, Tsai C, Chang B, Wang W (2015) A generic and rapid strategy for determining trace multiresidues of sulfonamides in aquatic products by using an improved QuEChERS method and liquid chromatography–electrospray quadrupole tandem mass spectrometry. Food Chem 175:189–196. https://doi.org/10.1016/j.foodchem.2014.11.133

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Li X, Liu X, Zhang J, Cao Y, Shi Z, Sun H (2015) Multi-class, multi-residue analysis of trace veterinary drugs in milk by rapid screening and quantification using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J Dairy Sci 98:8433–8444. https://doi.org/10.3168/jds.2015-9826

    Article  CAS  PubMed  Google Scholar 

  48. Rocha DG, Santos FA, da Silva JCC, Augusti R, Faria AF (2015) Multiresidue determination of fluoroquinolones in poultry muscle and kidney according to the regulation 2002/657/EC. A systematic comparison of two different approaches: Liquid chromatography coupled to high-resolution mass spectrometry or tandem mass spectrometry. J Chromatogr A 1379:83–91. https://doi.org/10.1016/j.chroma.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  49. Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217:2548–2560. https://doi.org/10.1016/j.chroma.2010.01.044

    Article  CAS  PubMed  Google Scholar 

  50. González-Curbelo M, Socas-Rodríguez B, Herrera-Herrera AV, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado M (2015) Evolution and applications of the QuEChERS method. TrAC - Trends Anal Chem 71:169–185. https://doi.org/10.1016/j.trac.2015.04.012

    Article  CAS  Google Scholar 

  51. Daniele G, Fieu M, Joachim S, Bado-Nilles A, Beaudouin R, Baudoin P, James-Casas A, Andres S, Bonnard M, Bonnard I, Geffard A, Vulliet E (2017) Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry. Environ Sci Pollut Res 24:16893–16904. https://doi.org/10.1007/s11356-017-9297-6

    Article  CAS  Google Scholar 

  52. Chen M, Yi Q, Hong J, Zhang L, Lin K, Yuan D (2015) Simultaneous determination of 32 antibiotics and 12 pesticides in sediment using ultrasonic-assisted extraction and high performance liquid chromatography-tandem mass spectrometry. Anal Methods 7:1896–1905

    Article  CAS  Google Scholar 

  53. Zhou J, Broodbank N (2014) Sediment-water interactions of pharmaceutical residues in the river environment. Water Res 48:61–70. https://doi.org/10.1016/j.watres.2013.09.026

    Article  CAS  PubMed  Google Scholar 

  54. Da Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85:1331–1339. https://doi.org/10.1016/j.chemosphere.2011.07.051

    Article  CAS  PubMed  Google Scholar 

  55. Chiaia-Hernandez AC, Krauss M, Hollender J (2013) Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environ Sci Technol 47:976–986. https://doi.org/10.1021/es303888v

    Article  CAS  PubMed  Google Scholar 

  56. Mutavdžić Pavlovic D, Pinušić T, Periša M, Babić S (2012) Optimization of matrix solid-phase dispersion for liquid chromatography tandem mass spectrometry analysis of 12 pharmaceuticals in sediments. J Chromatogr A 1258:1–15. https://doi.org/10.1016/j.chroma.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  57. Neves MA, Silva GS, Brito NM, Araújo KCM, Marques EP, Silva LK (2018) Aqueous ultrasound-assisted extraction for the determination of fluoroquinolones in mangrove sediment by high-performance liquid chromatography and fluorescence detector. J Braz Chem Soc 29:24–32. https://doi.org/10.21577/0103-5053.20170108

    Article  CAS  Google Scholar 

  58. Massei R, Byers H, Beckers L-M, Prothmann J, Brack W, Schulze T, Krauss M (2018) A sediment extraction and cleanup method for wide-scope multitarget screening by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem 410:177–188. https://doi.org/10.1007/s00216-017-0708-9

    Article  CAS  PubMed  Google Scholar 

  59. Díaz A, Peña-Alvarez A (2017) A simple method for the simultaneous determination of pharmaceuticals and personal care products in river sediment by ultrasound-assisted extraction followed by solid-phase microextraction coupled with gas chromatography-mass spectrometry. J Chromatogr Sci 55:946–953. https://doi.org/10.1093/chromsci/bmx058

    Article  CAS  PubMed  Google Scholar 

  60. De Carlo RM, Rivoira L, Ciofi L, Ancillotti C, Checchini L, Del Bubba M, Bruzzoniti MC (2015) Evaluation of different QuEChERS procedures for the recovery of selected drugs and herbicides from soil using LC coupled with UV and pulsed amperometry for their detection. Anal Bioanal Chem 407:1217–1229. https://doi.org/10.1007/s00216-014-8339-x

    Article  CAS  PubMed  Google Scholar 

  61. Muhammad N, Subhani Q, Wang F, Guo D, Zhao Q, Wu S, Zhu Y (2017) Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples. J Chromatogr A 1515:69–80. https://doi.org/10.1016/j.chroma.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  62. Daniele G, Fieu M, Joachim S, James-Casas A, Andres S, Baudoin P, Bonnard M, Bonnard I, Geffard A, Vulliet E (2016) Development of a multi-residue analysis of diclofenac and some transformation products in bivalves using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Application to samples from mesocosm studies. Talanta 155:1–7. https://doi.org/10.1016/j.talanta.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  63. Bergé A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 407:7995–8008. https://doi.org/10.1007/s00216-015-8972-z

    Article  CAS  PubMed  Google Scholar 

  64. Núñez M, Borrull F, Fontanals N, Pocurull E (2015) Determination of pharmaceuticals in bivalves using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 407:3841–3849. https://doi.org/10.1007/s00216-015-8617-2

    Article  CAS  PubMed  Google Scholar 

  65. Nannou CI, Boti VI, Albanis TA (2018) Trace analysis of pesticide residues in sediments using liquid chromatography–high-resolution Orbitrap mass spectrometry. Anal Bioanal Chem 410:1977–1989. https://doi.org/10.1007/s00216-018-0864-6

    Article  CAS  PubMed  Google Scholar 

  66. Gómez-Ramos MDM, Rajski Ł, Heinzen H, Fernández-Alba AR (2015) Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal Bioanal Chem 407:6317–6326. https://doi.org/10.1007/s00216-015-8709-z

    Article  CAS  Google Scholar 

  67. López MG, Fussell RJ, Stead SL, Roberts D, McCullagh M, Rao R (2014) Evaluation and validation of an accurate mass screening method for the analysis of pesticides in fruits and vegetables using liquid chromatography–quadrupole-time of flight–mass spectrometry with automated detection. J Chromatogr A 1373:40–50. https://doi.org/10.1016/J.CHROMA.2014.10.099

    Article  PubMed  Google Scholar 

  68. Ferreira JA, Ferreira JMS, Talamini V, Facco J de F, Rizzetti TM, Prestes OD, Adaime MB, Zanella R, Bottoli CBG (2016) Determination of pesticides in coconut (Cocos nucifera Linn.) water and pulp using modified QuEChERS and LC–MS/MS. Food Chem 213:616–624. https://doi.org/10.1016/j.foodchem.2016.06.114

    Article  CAS  PubMed  Google Scholar 

  69. Farré M, Picó Y, Barceló D (2014) Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J Chromatogr A 1328:66–79. https://doi.org/10.1016/j.chroma.2013.12.082

    Article  CAS  PubMed  Google Scholar 

  70. Stachniuk A, Fornal E (2013) Analytical considerations on the use of a fruit-specific and representative matrix in pesticide residue analysis by LC-ESI-MS/MS. Open Chem. https://doi.org/10.2478/s11532-013-0247-y

  71. AOAC Official Method 2007.01 (2007) Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. AOAC Int

    Google Scholar 

  72. European Union Reference Laboratories for Pesticides Residues (2015) Analysis of Acidic Pesticides using QuEChERS (EN15662) and acidified QuEChERS method

    Google Scholar 

  73. Ohkawa H, Miyagawa H, Lee PW (2007) Pesticide chemistry. https://doi.org/10.1002/9783527611249

    Google Scholar 

  74. Rejczak TP, Tuzimski T (2015) A review of recent developments and trends in the QuEChERS sample preparation approach

    Google Scholar 

  75. González-Curbelo MÁ, Lehotay SJ, Hernández-Borges J, Rodríguez-Delgado MÁ (2014) Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry. J Chromatogr A 1358:75–84. https://doi.org/10.1016/j.chroma.2014.06.104

    Article  CAS  PubMed  Google Scholar 

  76. Socas-Rodríguez B, González-Sálamo J, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado M (2017) Recent advances and developments in the QuEChERS method. Compr Anal Chem 76:319–374. https://doi.org/10.1016/bs.coac.2017.01.008

    Article  Google Scholar 

  77. Geis-Asteggiante L, Lehotay SJ, Heinzen H (2012) Effects of temperature and purity of magnesium sulfate during extraction of pesticide residues using the QuEChERS method. J AOAC Int 95:1311–1318

    Article  CAS  PubMed  Google Scholar 

  78. Vázquez PP, Lozano A, Uclés S, Ramos MMG, Fernández-Alba AR (2015) A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1426:161–173. https://doi.org/10.1016/J.CHROMA.2015.11.081

    Article  PubMed  Google Scholar 

  79. Wang Q, Yin J, Pan H, Xu F, Yang Y (2014) A novel method based on combining ultrasonic-assisted dispersive solid-phase extraction and low-density solvent dispersive liquid-liquid microextraction (UA-DSPE-LDS-DLLME) for the determination of organophosphorus pesticides in soil. Anal Methods 6:7335–7342. https://doi.org/10.1039/c4ay00521j

    Article  CAS  Google Scholar 

  80. Lozowicka B, Rutkowska E, Jankowska M, Łozowicka B, Rutkowska E, Jankowska M (2017) Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ Sci Pollut Res 24:7124–7138. https://doi.org/10.1007/s11356-016-8334-1

    Article  CAS  Google Scholar 

  81. Walorczyk S, Drożdżyński D, Kierzek R (2015) Two-step dispersive-solid phase extraction strategy for pesticide multiresidue analysis in a chlorophyll-containing matrix by gas chromatography–tandem mass spectrometry. J Chromatogr A 1412:22–32. https://doi.org/10.1016/J.CHROMA.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  82. Tette PAS, da Silva Oliveira FA, Pereira ENC, Silva G, de Abreu Glória MB, Fernandes C (2016) Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS. Food Chem 211:130–139. https://doi.org/10.1016/J.FOODCHEM.2016.05.036

    Article  CAS  PubMed  Google Scholar 

  83. Munaretto JS, Yonkos L, Aga DS (2016) Transformation of ionophore antimicrobials in poultry litter during pilot-scale composting. Environ Pollut 212:392–400. https://doi.org/10.1016/J.ENVPOL.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  84. Kaczyński P, Łozowicka B, Jankowska M, Hrynko I (2016) Rapid determination of acid herbicides in soil by liquid chromatography with tandem mass spectrometric detection based on dispersive solid phase extraction. Talanta 152:127–136. https://doi.org/10.1016/J.TALANTA.2016.02.001

    Article  PubMed  Google Scholar 

  85. Geis-Asteggiante L, Lehotay SJ, Lightfield AR, Dutko T, Ng C, Bluhm L (2012) Ruggedness testing and validation of a practical analytical method for >100 veterinary drug residues in bovine muscle by ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1258:43–54. https://doi.org/10.1016/J.CHROMA.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  86. Sadowska-Rociek A, Surma M, Cieślik E (2014) Comparison of different modifications on QuEChERS sample preparation method for PAHs determination in black, green, red and white tea. Environ Sci Pollut Res 21:1326–1338. https://doi.org/10.1007/s11356-013-2022-1

    Article  CAS  Google Scholar 

  87. Chen Y, Cao S, Zhang L, Xi C, Chen Z (2017) Modified QuEChERS combination with magnetic solid-phase extraction for the determination of 16 preservatives by gas chromatography–mass spectrometry. Food Anal Methods 10:587–595. https://doi.org/10.1007/s12161-016-0616-1

    Article  Google Scholar 

  88. Li Y-F, Qiao L-Q, Li F-W, Ding Y, Yang Z-J, Wang M-L (2014) Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry. J Chromatogr A 1361:77–87. https://doi.org/10.1016/J.CHROMA.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  89. Zheng H-B, Zhao Q, Mo J-Z, Huang Y-Q, Luo Y-B, Yu Q-W, Feng Y-Q (2013) Quick, easy, cheap, effective, rugged and safe method with magnetic graphitized carbon black and primary secondary amine as adsorbent and its application in pesticide residue analysis. J Chromatogr A 1300:127–133. https://doi.org/10.1016/J.CHROMA.2013.04.040

    Article  CAS  PubMed  Google Scholar 

  90. Lozano A, Rajski Ł, Belmonte-Valles N, Uclés A, Uclés S, Mezcua M, Fernández-Alba AR (2012) Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: validation and pilot survey in real samples. J Chromatogr A 1268:109–122. https://doi.org/10.1016/j.chroma.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  91. Bragança I, Plácido A, Paíga P, Domingues VF, Delerue-Matos C (2012) QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci Total Environ 433:281–289. https://doi.org/10.1016/j.scitotenv.2012.06.035

    Article  CAS  PubMed  Google Scholar 

  92. Salvia MV, Vulliet E, Wiest L, Baudot R, Cren-Olivé C (2012) Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography-tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. J Chromatogr A 1245:122–133. https://doi.org/10.1016/j.chroma.2012.05.034

    Article  CAS  PubMed  Google Scholar 

  93. Karcı A, Balcıoğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664. https://doi.org/10.1016/j.scitotenv.2009.04.047

    Article  CAS  PubMed  Google Scholar 

  94. Zhang Z, Rhind SM, Kerr C, Osprey M, Kyle CE (2011) Selective pressurized liquid extraction of estrogenic compounds in soil and analysis by gas chromatography–mass spectrometry. Anal Chim Acta 685:29–35. https://doi.org/10.1016/j.aca.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  95. Hashimoto JC, Paschoal JAR, Queiroz SCN, Ferracini VL, Assalin MR, Reyes FGR (2012) A simple method for the determination of malachite green and leucomalachite green residues in fish by a modified QuEChERS extraction and LC/MS/MS. J AOAC Int 95:913–922. https://doi.org/10.5740/jaoacint.11-140

    Article  CAS  PubMed  Google Scholar 

  96. Van Heide MD, Bruns S, Lach G, Parlar H (2012) Ascorbic acid as analyte protectant applied within the quechers multi-method (GC-MS). Fresenius Environ Bull 21:1034–1041

    Google Scholar 

  97. Lehotay SJ, Maòtovská K, Lightfield AR. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables

    Google Scholar 

  98. Cerqueira MBR, Caldas SS, Primel EG (2014) New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge. J Chromatogr A 1336:10–22. https://doi.org/10.1016/j.chroma.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  99. Peysson W, Vulliet E (2013) Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-of-flight-mass spectrometry. J Chromatogr A 1290:46–61. https://doi.org/10.1016/j.chroma.2013.03.057

    Article  CAS  PubMed  Google Scholar 

  100. Abdallah H, Arnaudguilhem C, Jaber F, Lobinski R (2014) Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap-Orbitrap). J Chromatogr A 1355:61–72. https://doi.org/10.1016/J.CHROMA.2014.05.078

    Article  CAS  PubMed  Google Scholar 

  101. European Commission (2002) Commission Decision (2002/657/EC) on the implementation of national residue monitoring plans in the member states in 2002

    Google Scholar 

  102. Aguilera-Luiz MM, Romero-González R, Plaza-Bolaños P, Vidal JLM, Garrido Frenich A (2013) Rapid and semiautomated method for the analysis of veterinary drug residues in honey based on turbulent-flow liquid chromatography coupled to ultrahigh-performance liquid chromatography–Orbitrap mass spectrometry (TFC-UHPLC-Orbitrap-MS). J Agric Food Chem 61:829–839. https://doi.org/10.1021/jf3048498

    Article  CAS  PubMed  Google Scholar 

  103. Lopes RP, de Freitas Passos ÉE, de Alkimim Filho JF, Vargas EA, Augusti DV, Augusti R (2012) Development and validation of a method for the determination of sulfonamides in animal feed by modified QuEChERS and LC–MS/MS analysis. Food Control 28:192–198. https://doi.org/10.1016/J.FOODCONT.2012.04.026

    Article  CAS  Google Scholar 

  104. Filigenzi MS, Ehrke N, Aston LS, Poppenga RH (2011) Evaluation of a rapid screening method for chemical contaminants of concern in four food-related matrices using QuEChERS extraction, UHPLC and high resolution mass spectrometry. Food Addit Contam Part A 28:1324–1339. https://doi.org/10.1080/19440049.2011.604796

    Article  CAS  Google Scholar 

  105. Gómez-Pérez ML, Plaza-Bolaños P, Romero-González R, Martínez-Vidal JL, Garrido-Frenich A (2012) Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography–Orbitrap high resolution mass spectrometry. J Chromatogr A 1248:130–138. https://doi.org/10.1016/j.chroma.2012.05.088

    Article  CAS  PubMed  Google Scholar 

  106. Chung HS, Lee Y-J, Rahman MM, Abd El-Aty AM, Lee HS, Kabir MH, Kim SW, Park B-J, Kim J-E, Hacımüftüoğlu F, Nahar N, Shin H-C, Shim J-H (2017) Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci Total Environ 605–606:322–331. https://doi.org/10.1016/J.SCITOTENV.2017.06.231

    Article  PubMed  Google Scholar 

  107. Hu F, Bian K, Liu Y, Su Y, Zhou T, Song X, He L (2014) Development of a modified QUick, Easy, CHeap, Effective, Rugged and Safe method for the determination of multi-class antimicrobials in vegetables by liquid chromatography tandem mass spectrometry. J Chromatogr A 1368:52–63. https://doi.org/10.1016/j.chroma.2014.09.074

    Article  CAS  PubMed  Google Scholar 

  108. Martínez-Piernas AB, Polo-López MI, Fernández-Ibáñez P, Agüera A (2018) Validation and application of a multiresidue method based on liquid chromatography-tandem mass spectrometry for evaluating the plant uptake of 74 microcontaminants in crops irrigated with treated municipal wastewater. J Chromatogr A 1534:10–21. https://doi.org/10.1016/j.chroma.2017.12.037

    Article  CAS  PubMed  Google Scholar 

  109. Chuang Y-H, Zhang Y, Zhang W, Boyd SA, Li H (2015) Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. J Chromatogr A 1404:1–9. https://doi.org/10.1016/j.chroma.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  110. Riemenschneider C, Al-Raggad M, Moeder M, Seiwert B, Salameh E, Reemtsma T (2016) Pharmaceuticals, their metabolites, and other polar pollutants in field-grown vegetables irrigated with treated municipal wastewater. J Agric Food Chem 64:5784–5792. https://doi.org/10.1021/acs.jafc.6b01696

    Article  CAS  PubMed  Google Scholar 

  111. Mohamed R, Hammel Y-A, LeBreton M-H, Tabet J-C, Jullien L, Guy PA (2007) Evaluation of atmospheric pressure ionization interfaces for quantitative measurement of sulfonamides in honey using isotope dilution liquid chromatography coupled with tandem mass spectrometry techniques. J Chromatogr A 1160:194–205. https://doi.org/10.1016/j.chroma.2007.05.071

    Article  CAS  PubMed  Google Scholar 

  112. Li XQ, Li HM, Xu S, Gao Y, Zhang QH, Zhang Y, Feng MY (2019) Rapid quantification of trace chloramphenicol in honey under ambient conditions using direct analysis via real-time QTRAP mass spectrometry. Food Chem 276:50–56. https://doi.org/10.1016/j.foodchem.2018.09.130

    Article  CAS  PubMed  Google Scholar 

  113. Martínez-Villalba A, Vaclavik L, Moyano E, Galceran MT, Hajslova J (2013) Direct analysis in real time high-resolution mass spectrometry for high-throughput analysis of antiparasitic veterinary drugs in feed and food. Rapid Commun Mass Spectrom 27:467–475. https://doi.org/10.1002/rcm.6466

    Article  CAS  PubMed  Google Scholar 

  114. Rutkowska E, Łozowicka B, Kaczyński P (2018) Modification of multiresidue QuEChERS protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC-MS/MS. Food Anal Methods 11:709–724. https://doi.org/10.1007/s12161-017-1047-3

    Article  Google Scholar 

Download references

Acknowledgements

Ms. Α. Ofrydopoulou would like to thank the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (H.F.R.I.) for providing her scholarship through the action “1st Proclamation of Scholarships from ELIDEK for Ph.D. Candidates”—Scholarship Code: 429, as well as the Onassis Foundation for the grant of a doctoral scholarship through the Greek Scholarship Program for Greeks for the academic year 2016/2017.

Ester Heath and David Heath acknowledge the project (ISO-FOOD): “ERA CHAIR FOR ISOTOPE TECHNIQUES IN FOOD QUALITY, SAFETY AND TRACEABILITY,” Grant agreement no: 621329, Duration: 2014–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Lambropoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nannou, C., Ofrydopoulou, A., Heath, D., Heath, E., Lambropoulou, D. (2019). QuEChERS—A Green Alternative Approach for the Determination of Pharmaceuticals and Personal Care Products in Environmental and Food Samples. In: Płotka-Wasylka, J., Namieśnik, J. (eds) Green Analytical Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9105-7_14

Download citation

Publish with us

Policies and ethics