Skip to main content

Effect of Salinity on Soil Nutrients and Plant Health

  • Chapter
  • First Online:
Salt Stress, Microbes, and Plant Interactions: Causes and Solution

Abstract

Salinity is one of the most studied abiotic factors affecting soil and plant health in most of the arid and semiarid ecosystems across the globe. It affects the soil by altering the physical, chemical, and biological properties such as soil pH, bulk density, nutrient imbalance, moisture availability, and microbial diversity. These changes in the soil properties further affect the plant health by creating unfavorable conditions like osmotic stress, ion toxicity, low nutrient bioavailability, altered plant-pathogen interactions, etc. However, in natural conditions, both biotic and abiotic factors interact; therefore, plants have to defend themselves against multiple stresses simultaneously. Remarkably, plants have developed a variety of mechanisms to survive under the stressful condition with an alteration in the different plant processes. The aim of this chapter is to provide an overview of salinity imbalance soil nutritional and microbial status on plant health and also summarize the appropriate management practices to overcome salinity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Latef AAA, Hashem A, AbdAllah EF, Gucel S, Tran LP (2016) Nitric Oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347–358

    PubMed  PubMed Central  Google Scholar 

  • Al-Karaki GN (2000) Growth, water use efficiency, and sodium and potassium acquisition by tomato cultivars grown under salt stress. J Plant Nutri 23:1–8

    Article  CAS  Google Scholar 

  • Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14:843–853

    Article  PubMed  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Plant Physiol 171:670–687

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Asfaw E, Suryabhagavan KV, Argaw M (2018) Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia. J Saudi Soc Agric Sci 17:250–258

    Article  Google Scholar 

  • Asghar HN, Setia R, Marschner P (2012) Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. Soil Biol Biochem 47:175–178

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Plant Physiol 8:509

    Article  Google Scholar 

  • Awad AS, Edwards DG, Campbell LC (1990) Phosphorus enhancement of salt tolerance of tomato. Crop Sci 30:123–128

    Article  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Bar-Tal A, Feigenbaum S, Sparks DL (1991) Potassium-salinity interactions in irrigated corn. Irrig Sci 12:27–35

    Article  Google Scholar 

  • Batra L, Manna MC (2009) Dehydrogenase activity and microbial biomass carbon insalt-affected soils of semiarid and arid regions. Arid Land Res Manag 11:295–303

    Article  CAS  Google Scholar 

  • Bernstein L, Ogata G (1966) Effects of salinity on nodulation, nitrogen fixation, and growth of soybeans and alfalfa. Agronomy 58:201–203

    Article  CAS  Google Scholar 

  • Bernstein LL, Francois E, Clark RA (1974) Interactive effects of salinity and fertility on yields of grains and vegetables. Agron J 66:412–421

    Article  CAS  Google Scholar 

  • Bidalia A, Hanief M, Rao KS (2017) Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. Photosynthetica 55:231–239

    Article  CAS  Google Scholar 

  • Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaker NS, Macdonald JD (1985) Effect of soil salinity on the formation of sporangia and zoospores by three isolates of Phytophthora. Phytopathology 75:270–274

    Article  Google Scholar 

  • Blaker NS, MacDonald J (1986) Role of salinity development of Phytopthora root-rot of citrus. Phytopathology 76:970–975

    Article  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  CAS  PubMed  Google Scholar 

  • Botella MA, Cruz C, Martins-Louçao MA, Cerdá A (1993) Nitrate reductase activity in wheat seedlings as affected by NO3/NH4 ratio and salinity. J Plant Physiol 142:531–536

    Article  CAS  Google Scholar 

  • Botella MA, Martínez V, Nieves M, Cerdá A (1997) Effect of salinity on the growth and nitrogen uptake by wheat seedlings. J Plant Nutri 20:793–804

    Article  CAS  Google Scholar 

  • Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240

    Article  CAS  PubMed  Google Scholar 

  • Braun Y, Hassidim M, Lerner HR, Reinhold L (1986) Studies on H-Translocating ATPases in plants of varying resistance to salinity. I. Salinity during growth modulates the proton pump in the halophyte Atriplexnum mulariu. Plant Physiol 81:1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. InTech, Rijeka, pp 21–38

    Google Scholar 

  • Champagnol F (1979) Relationships between phosphate nutrition of plants and salt toxicity. Phosphorus Agric 76:35–43

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chowdhury N, Marschner P, Burns RG (2011) Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil 344:241–254

    Article  CAS  Google Scholar 

  • Creda A, Bingham FT, Hoffman GJ (1977) Interactive effects of salinity and phosphorus on sesame. Soil Sci Soc Am J 41:915–918

    Article  Google Scholar 

  • Cushman JC, DeRocher EJ, Bohnert HJ (1990) Gene expression during adaptation to salt stress. In: Katterman F (ed) Environmental injury to plants. Academic Press, San Diego, pp 173–203

    Chapter  Google Scholar 

  • Daami-Remadi M, Souissi A, Oun HB, Mansour M, Nasraoui B (2009) Salinity effects on fusarium wilt severity and tomato growth. Dyn Soil Dyn Plant 3:61–69

    Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer WH (2002) Influence of inoculum density of Fusarium oxysporum f. sp. cyclaminis and sodium chloride on cyclamen and the development of Fusarium wilt. Plant Dis 86:389–393

    Article  PubMed  Google Scholar 

  • Elmer WH (2003) Local and systemic effects of NaCl on root com- position, rhizobacteria, and Fusarium crown and root rot of asparagus. Phytopathology 93:186–192

    Article  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    CAS  PubMed  Google Scholar 

  • Esmaili E, Kapourchal SA, Malakouti MJ, Homaee M (2008) Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil Environ 54:537–546

    Article  CAS  Google Scholar 

  • Flowers TJ, Troke BJ, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356

    Article  CAS  Google Scholar 

  • Frankenberger WT, Bingham FT (1982) Influence of salinity on soil enzyme-activities. Soil Sci Soc Am J 46:1173–1177

    Article  CAS  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue- specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Frota JNE, Tucker TC (1978) Absorption rates of ammonium and nitrate by red kidney beans under salt and water stress. Soil Sci Soc Am J 42:753–756

    Article  CAS  Google Scholar 

  • Galinski EA, Truper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Gara L, Pinto D, De MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant – pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  CAS  Google Scholar 

  • Garg BK, Gupta IC (2011) Salinity tolerance in plants: methods, mechanisms and management. Scientific Publishers, India

    Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178:255–263

    Article  CAS  Google Scholar 

  • Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  CAS  PubMed  Google Scholar 

  • Gasol JM, Casamayor EO, Joint I, Garde K, Gustavson K, Benlloch S, Diez B, Schauer M, Massana R, Pedrs-Ali C (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206

    Article  Google Scholar 

  • Ghosh B, Ali Md N, Saikat G (2016) Response of rice under salinity stress: a review update. J Res Rice 4:167

    Article  Google Scholar 

  • Gibson TS (1988) Carbohydrate metabolism and phosphorus/salinity interactions in wheat (Triticum aestivum L.). Plant Soil 111:25–35

    Article  CAS  Google Scholar 

  • Goudarzi A, Banihashemi Z, Maftoun M (2011) Effect of salt and water stress on root infection by Macrophomina phaseolina and ion composition in shoot in sorghum. Iran J Plant Pathol 47:69–83

    Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ 38:275–300

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticulture crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Grattan SR, Maas EV (1985) Root control of leaf phosphorus and chlorine accumulation in soybean under salinity stress. Agron J 77:890–895

    Article  Google Scholar 

  • Gruber BD, Giehl RFH, Friedel S, Wirén NV (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Havaux I (1993) Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ 16:461–467

    Article  Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Exp Bot 66:270–278

    Article  CAS  Google Scholar 

  • Helal HM, Mengel K (1979) Nitrogen metabolism of young barley plants as affected by NaCI salinity and potassium. Plant Soil 51:547–562

    Article  Google Scholar 

  • Homaee M, Feddes RA, Dirksen C (2002) A macroscopic water extraction model for nonuniform transient salinity and water stress. Soil Sci Soc Am J 66:1764–1772

    Article  CAS  Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD, Nassery H (1981) K+-Na+ selectivity in roots of Triticum, Helianthus and Allium. Physiol Plant 52:217–224

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162

    Chapter  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:1–11

    Article  CAS  Google Scholar 

  • Kalaji H, Nalborczyk E (1991) Gas exchange of barley seedlings growing under salinity stress. Photosynthetica 25:197–202

    Google Scholar 

  • Kalifa A, Barthakur NN, Donnelly DJ (2000) Phosphorus reduces salinity stress in micropropagated potato. Am J Potato Res 77:179–182

    Article  CAS  Google Scholar 

  • Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Hussain J, Kang SM, Kim YH, Adnan M, Tang DS, Waqas M, Radhakrishnan R, Hwang YH, Hwang YH (2011) Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max L. J Microbiol Biotechnol 21:893–902

    Article  CAS  PubMed  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter. Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  • Kotuby AJ, Rich K, Boyd K (2002) Salinity and plant tolerance, Paper AG-SO-03. Electronic Publishing

    Google Scholar 

  • Lagerwerff JV, Eagle HE (1962) Transpiration related to ion uptake by beans from saline substrates. Soil Sci 93:420–430

    Article  CAS  Google Scholar 

  • Lakshmi-Kumari M, Singh CS, Subba Rao NS (1974) Root hair infection and nodulation of Lucerne (Medicago saliva L.) as influenced by salinity and alkalinity. Plant Soil 40:261–268

    Article  CAS  Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Levin AG, Lavee S, Tsror L (2003) Epidemiology of Verticillium dahliae on olive (cv. Picual) and its effect on yield under saline conditions. Plant Pathol 52:212–218

    Article  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+ /Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • MacDonald JD (1984) Salinity effects on the susceptibility of chrysanthemum roots to Phytophthora cryptogea. Phytopathology 74:621–624

    Article  Google Scholar 

  • Malik A, Gleixner G (2013) Importance of microbial soil organic matter processing in dissolved organic carbon production. FEMS Microbiol Ecol 86:139–148

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martins CP, Neves DM, Cidade LC, Mendes AF, Silva DC, Almeida AAF, Coelho-Filho MA, Gesteira AS, Soares-Filho WS, Costa MG (2017) Expression of the citrus CsTIP2; 1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions. Planta 245:951–963

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Mohamed DJ, Martiny JBH (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388

    Article  PubMed  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, García-Hernández JL, Hernández-Montiel L, Valdez-Cepeda RD (2015) Moderate salt stress on the physiological and morphological traits of Aloe vera L. Bot Sci 93:639–648

    Article  Google Scholar 

  • Nachmias A, Kaufman Z, Livescu L, Tsror MA, Caligari PDS (1993) Effects of salinity and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 21:245–255

    Article  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Nelson PN, Ladd JN, Oades JM (1996) Decomposition of 14C-labelled plant material in a salt-affected soil. Soil Biol Biochem 28:433–441

    Article  CAS  Google Scholar 

  • Nelson DE, Shen B, Bohnert HJ (1998) Salinity tolerance mechanisms, models and the metabolic engineering of complex traits. In: Setlow JK (ed) Genetic engineering: principles and methods, vol 20. Plenum Press, New York, pp 153–176

    Chapter  Google Scholar 

  • Newer B, Ali A, Zarqawi H (2013) Soil salinity mapping model developed using remote sensing and GIS in Libya. In Proceedings of the Annual International Conference 7th Edition of Geotunis, Southern Hammamet, Tunis, pp 4–12

    Google Scholar 

  • Nieman RH, Clark RA (1976) Interactive effects of salinity and phosphorus nutrition on the concentrations of phosphate and phosphate esters in mature photosynthesizing corn leaves. Plant Physiol 57:11557–11161

    Article  Google Scholar 

  • Niewiadomska E, Karpinska B, Romanowska E, Slesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ondrasek G, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants – mechanisms and adaptations. In Tech, Rijeka. isbn:978-953-307-394-1

    Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palfi G (1965) The effect of sodium salt on the nitrogen, phosphorus, potassium, sodium and amino acid content of rice shoots. Plant and Soil 22:127–135

    Article  CAS  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33:204–217

    Article  CAS  Google Scholar 

  • Pedrós-Alió C, Caldern-Paz JI, MacLean MH, Medina G, Marrase C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    Article  PubMed  Google Scholar 

  • Peret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses in search of phosphate. Plant Physiol 166:1713–1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Mäser P (2009) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  PubMed  Google Scholar 

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14:211

    Article  CAS  Google Scholar 

  • Purvis AC, Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues. Physiol Plant 88:712–718

    Article  CAS  PubMed  Google Scholar 

  • Radanielson AM, Gaydon DS, Li T, Angeles O, Roth CH (2018) Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron 100:44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raga V, Intrigliolo DS, Bernet GP, Carbonell EA, Asins MJ (2016) Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks Cleopatra mandarin and trifoliate orange. Tree Genet Genom 12:1–16

    Article  Google Scholar 

  • Ragazzi A, Vecchio V (1992) Behaviour of chlamydospore of Fusarium oxysporum f. sp. vasinfectum in substrates containing sodium chloride. Phytopathol Mediterr 31:85–87

    Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon-dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36

    Article  CAS  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SL, Stanghellini ME (1988) Effect of salinity stress on development of Pythium blight in Agrostis palustris. Phytopathol 78:1495–1497

    Article  Google Scholar 

  • Rath KM, Rousk J (2015) Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol Biochem 81:108–123

    Article  CAS  Google Scholar 

  • Reddy INBL, Kim B-K, Yoon IS, Kim KH, Kwon TR (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24:12–144

    Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Biol Res 53:117–145

    CAS  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Rousk J, Elyaagubi FK, Jones DL, Godbold DL (2011) Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem 43:1881–1887

    Article  CAS  Google Scholar 

  • Sanogo S (2004) Response of Chile pepper to Phytophthora capsici in relation to soil salinity. Plant Dis 88:205–209

    Article  CAS  PubMed  Google Scholar 

  • Sardinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Saviozzi A, Cardelli R, Di Puccio R (2011) Impact of salinity on soil biological activities: a laboratory experiment. Commun Soil Sci Plant Anal 42:358–367

    Article  CAS  Google Scholar 

  • Schoeneweiss DF (1975) Predisposition, stress, and plant disease. Annu Rev Phytopathol 13:193–211

    Article  Google Scholar 

  • Setia R, Smith P, Marschner P, Gottschalk P, Baldock J, Verma V, Setia D, Smith J (2012) Simulation of salinity effects on past, present, and future soil organic carbon stocks. Environ Sci Technol 46:1624–1631

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Google Scholar 

  • Sima NAKK, Ahmad ST, Alitabar RA, Mottaghi A, Pessarakli M (2012) Interactive effects of salinity and phosphorus nutrition on physiological responses of two barley species. J Plant Nutri 35:1411–1428

    Article  CAS  Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74:72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soliman MS, Shalabi HG, Campbell WF (1994) Interaction of salinity, nitrogen, and phosphorus fertilization on wheat. J Plant Nutri 17:116–117

    Article  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup A (1994) Chemistry of salt-affected soils and fertility management. In: LN RD, Singh NT, Gupta RK, Tyagi NK (eds) Salinity Management for Sustainable Agriculture. Central Soil Salinity Research Institute, Karnal, pp 18–40

    Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239

    Article  Google Scholar 

  • Turco E, Naldini D, Ragazzi A (2002) Disease incidence and vessel anatomy in cotton plants infected with Fusarium oxysporum f. sp. vasinfectum under salinity stress. Zeitschrif Pflanzenk Pflanzen 109:15–24

    Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Ullrich WR (2002) Salinity and nitrogen nutrition. In: Läuchli A, Lüttge U (eds) Salinity: environment plants molecules. Springer, Dordrecht

    Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Ann Rev Plant Biol 54:575–603

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, London/New York

    Google Scholar 

  • Wakeel A (2013) Potassium–sodium interactions in soil and plant under saline-sodic conditions. J Plant Nutri Soil Sci 174:344–354

    Article  CAS  Google Scholar 

  • Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41:29–40

    Article  Google Scholar 

  • Xu J, Huang X, Lan H, Zhang H, Huang J (2016) Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Plant Signal Behav 11:e1138194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:348

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Marschner P (2012) Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biol Biochem 53:50–55

    Article  CAS  Google Scholar 

  • Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. ISWCR 3:316–323

    Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynthesis Res 100:29–43

    Article  CAS  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Meinzer FC (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Aust J Plant Physiol 26:79–86

    Google Scholar 

  • Zhukovskaya NV (1973) Absorption and accumulation of phosphate by plants under conditions of salinization. Sov Plant Physiol 20:55–61

    Google Scholar 

  • Zrig A, Mohamed HB, Tounekti T, Khemira H, Serrano M, Valero D, Vadel AM (2016) Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South Afr J Bot 102:50–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bidalia, A., Vikram, K., Yamal, G., Rao, K.S. (2019). Effect of Salinity on Soil Nutrients and Plant Health. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer, Singapore. https://doi.org/10.1007/978-981-13-8801-9_13

Download citation

Publish with us

Policies and ethics