Skip to main content

Wonders of Nanotechnology for Remediation of Polluted Aquatic Environs

  • Chapter
  • First Online:
Fresh Water Pollution Dynamics and Remediation

Abstract

On earth, all forms of life wholly and solely depend upon the clean water sources for their survival. The freshwater ecosystems are home for large number of organisms from microscopic to macroscopic species. However, water pollution has changed the history of freshwater ecosystems due to addition of variety of pollutants. The problem of water pollution is getting worsened year after year which ultimately affects the limited freshwater resources. The anthropogenic activities have created a situation that may, in the coming years, cause permanent damage to the balanced structure of freshwater ecosystems. There are numerous techniques available for wastewater treatment prior to its discharge into recipient water bodies. But, due to one or other reasons, these conventional techniques fail to meet the demands of treating the wastewaters. Besides, efficiency of these available conventional techniques is also a matter of concern. The literature cited in this chapter suggests that nanotechnology could be a valuable, efficient and clean technology to treat the wastewaters. It is not selective to cleanup only organic based pollutants but efficient to remediate heavy metals (Cd2+, Pb2+, Zn2+, Hg2+ and Cr3+) and pesticides in wastewaters. Furthermore, due to an excellent adsorption and catalytic properties of nanomaterials, it has proven to have marvellous antimicrobial activity, pathogen detection and disinfectant quality for the treatment wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri, S., Mota, J. P. B., Rostam-Abadi, M., & Rood, M. J. (2006). Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation. Langmuir, 21, 896–904.

    Article  CAS  Google Scholar 

  • Alalm, M. G., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63.

    Article  Google Scholar 

  • Amin, M. T., Alazba, A. A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014. https://doi.org/10.1155/2014/825910.

    Article  CAS  Google Scholar 

  • Aragon, M., Kottenstette, R., Dwyer, B., Aragon, A., Everett, R., Holub, W., Siegel, M., & Wright, J. (2007). Arsenic pilot plant operation and results. Anthony: Sandia National Laboratories.

    Google Scholar 

  • Arora, J., & Mathur, A. (2017). Role of Nano-technology in water and waste-water management. Internation Journal of Advance Research in Science and Engineering, 6(10), 161–168.

    Google Scholar 

  • Auffan, M., Rose, J., Proux, O., Borschneck, D., Masion, A., Chaurand, P., Hazemann, J. L., Chaneac, C., Jolivet, J. P., Wiesner, M. R., Van Geen, A., & Bottero, J. Y. (2008). Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity. Langmuir, 24(7), 3215–3222.

    Article  CAS  Google Scholar 

  • Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641.

    Article  CAS  Google Scholar 

  • Ayanda, O. S., & Petrik, L. F. (2014). Nanotechnology: The breakthrough in water and wastewater treatment. Internatioanl Journal of Chemical, Materijal and Enviromnmental Research, 1, 1–2.

    Google Scholar 

  • Baumgarten, E., & Dusing, U. K. (1994). Sorption of metal ions on alumina. Journal of Colloid and Interface Science, 194, 1–9.

    Article  Google Scholar 

  • Bellona, C., & Drewes, J. E. (2007). Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: A pilot-scale study. Water Research, 41, 3948–3958.

    Article  CAS  Google Scholar 

  • Binks P (2007) Nanotechnology & water: Opportunities and challenges. Victorian water sustainability seminar.

    Google Scholar 

  • Bora, T., & Dutta, J. (2014). Applications of nanotechnology in wastewater treatment – A review. Journal of Nanoscience and Nanotechnology, 613–626. https://doi.org/10.1166/jnn.2014.8898.

    Article  CAS  Google Scholar 

  • Bottino, A., Capannelli, G., D’Asti, V., & Piaggio, P. (2001). Preparation and properties of novel organic-inorganic porous membranes. Separation and Purification Technology, 22(23), 269–275.

    Article  Google Scholar 

  • Buzea, C., Blandino, I. I. P., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR172.

    Article  Google Scholar 

  • Cai, Y. Q., Jiang, G. B., Liu, J. F., & Zhou, Q. X. (2003). Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tertoctylphenol. Analytical Chemistry, 75(10), 2517–2521.

    Article  CAS  Google Scholar 

  • Chatuverdi, S., Dave, P. N., & Shah, N. K. (2012). Applications of nanocatalyst in new era. Journal of Saudi Chemical Society, 16, 307–325.

    Article  CAS  Google Scholar 

  • Chen, W., Duan, L., & Zhu, D. Q. (2007). Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science and Technology, 41(24), 8295–8300.

    Article  CAS  Google Scholar 

  • Chen, Z. P., Li, Y., Guo, M., et al. (2016). One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III). Journal of Hazardous Materials, 310, 188–198.

    Article  CAS  Google Scholar 

  • Chin, S. S., Chiang, K., & Fane, A. G. (2006). The stability of polymeric membranes in a TiO2 photocatalysis process. Journal of Membrane Science, 275(1–2), 202–211.

    Article  CAS  Google Scholar 

  • Choi, H., Stathatos, E., & Dionysiou, D. D. (2006). Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental, 63(1–2), 60–67.

    Article  CAS  Google Scholar 

  • Chorawala, K. K., & Mehta, M. J. (2015). Applications of nanotechnology in wastewater treatment. International Journal of Innovative and Emerging Research in Engineering, 2(1), 21–26.

    Google Scholar 

  • Cloete, T. E., de Kwaadsteniet, M., Botes, M., & Lopez-Romero, J. M. (2010). Nanotechnology in water treatment applications. Wymondham: Caister Academic Press.

    Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.

    Article  CAS  Google Scholar 

  • Crooks, R. M., Zhao, M. Q., Sun, L., Chechik, V., & Yeung, L. K. (2001). Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts of Chemical Research, 34(3), 181–190.

    Article  CAS  Google Scholar 

  • da Silva, B. F., Perez, S., Gardinalli, P., Singhal, R. K., Mozeto, A. A., & Barcelo, D. (2011). Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry, 30(3), 528–540.

    Article  CAS  Google Scholar 

  • De Gusseme, B., Hennebel, T., Christiaens, E., Saveyn, H., Verbeken, K., Fitts, J. P., Boon, N., & Verstraete, W. (2011). Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Research, 45(4), 1856–1864.

    Article  CAS  Google Scholar 

  • Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Matis, K. A. (2003). Sorption of As(V) ions by akaganeite-type nanocrystals. Chemosphere, 50(1), 155–163.

    Article  CAS  Google Scholar 

  • Diallo, M. S., Christie, S., Swaminathan, P., Johnson, J. H., & Goddard, W. A. (2005). Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylenediamine core and terminal NH2 groups. Environmental Science and Technology, 39(5), 1366–1377.

    Article  CAS  Google Scholar 

  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Report, 15, 11–23.

    Article  Google Scholar 

  • Duran, A., Tuzen, M., & Soylak, M. (2009). Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. Journal of Hazardous Materials, 169(1e3), 466–471.

    Article  CAS  Google Scholar 

  • Ebert, K., Fritsch, D., Koll, J., & Tjahjawiguna, C. (2004). Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. Journal of Membrane Science, 233(1e2), 71–78.

    Article  CAS  Google Scholar 

  • El Saliby, I. J., Shon, H. K., Kandasamy, J., & Vigneswaran, S. (2009). Nanotechnology for wastewater treatment: In brief. In Vigneswaran S. (Ed.), Water and wastewater treatment technologies (1 pp).

    Google Scholar 

  • Fathizadeh, M., Aroujalian, A., & Raisi, A. (2011). Effect of added NaXnano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science, 375, 88–95.

    Article  CAS  Google Scholar 

  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.

    Article  CAS  Google Scholar 

  • Feng, C., Khulbe, K. C., Matsuura, T., Tabe, S., & Ismail, A. F. (2013). Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separation and Purification Technology, 102, 118–135.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  • Gao, W., Majumder, M., Alemany, L. B., Narayanan, T. N., Ibarra, M. A., Pradhan, B. K., & Jayan, P. M. (2011). Engineered graphite oxide materials for application in water purification. ACS Applied Materials & Interfaces, 3(6), 1821–1826.

    Article  CAS  Google Scholar 

  • Gehrke, I., Keuter, V., & Groß, F. (2012). Development of nanocomposite membranes with photocatalytic surfaces. Journal of Nanoscience and Nanotechnology, 12, 9163–9168.

    Article  CAS  Google Scholar 

  • Guesh, K., Mayoral, A., Alvarez, C. M. C. Y., & Diaz, I. (2016). Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous and Mesoporous Materials, 225, 88–97.

    Article  CAS  Google Scholar 

  • Guo, M., Song, W., Wang, T., Li, Y., Wang, X., & Du, X. (2015). Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta, 144, 998–1006.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Saleh, T. A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – An overview. Environmental Science and Pollution Research, 20, 2828–2843.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling – An overview. RSC Advances, 2, 6380–6388.

    Article  CAS  Google Scholar 

  • Hristovski, K., Baumgardener, A., & Westerhoff, P. (2007). Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanoparticles to aggregated nanoparticles media. Journal of Hazardous Materials, 147, 265–274.

    Article  CAS  Google Scholar 

  • Hristovski, K. D., Nguyen, H., & Westerhoff, P. K. (2009a). Removal of arsenate and 17-ethinyl estradiol (EE2) by iron oxide modified activated carbon fibers. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 44(4), 354–361.

    CAS  Google Scholar 

  • Hristovski, K. D., Westerhoff, P. K., Moller, T., & Sylvester, P. (2009b). Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon. Chemical Engineering Journal, 146(2), 237–243.

    Article  CAS  Google Scholar 

  • Hu, E. L., & Shaw, D. T. (1998). Synthesis and assembly. In R. W. Siegel, E. Hu, & M. C. Roco (Eds.), Nanostructure science and technology. Dordrecht: Kluwer academic publishers.

    Google Scholar 

  • Hu, J., Chen, G., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39, 4528–4536.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.

    Article  CAS  Google Scholar 

  • Inoue, Y., Hoshino, M., Takahashi, H., et al. (2002). Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry, 92(1), 37–42, 2002.

    Article  CAS  Google Scholar 

  • Issabayeva, G., Aroua, M. K., & Sulaiman, N. M. (2007). Continuous adsorption of lead ions in a column packed with palm shell activated carbon. Journal of Hazardous Materials, 155(1–2), 109–113.

    Google Scholar 

  • Jayavarthanan, R., Nanda, A., & Bhat, M. A. (2017). The impact of nanotechnology on environment. In B. K. Nayak, A. Nanda, & M. Bhat (Eds.), Integrating biologically-inspired nanotechnology into medical practice (167p). Hershey: IGI Global.

    Google Scholar 

  • Jeong, B. H., Hoek, E. M. V., Yan, Y. S., Subramani, A., Huang, X. F., Hurwitz, G., Ghosh, A. K., & Jawor, A. (2007). Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. Journal of Membrane Science, 294(1–2), 1–7.

    Article  CAS  Google Scholar 

  • Ji, L. L., Chen, W., Duan, L., & Zhu, D. Q. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environmental Science and Technology, 43(7), 2322–2327.

    Article  CAS  Google Scholar 

  • Jose, A. J., Jacob, A. M., Manjush, K. C., & Kappen, J. (2018). Chitosan in water purification technology. In S. Ahmad & C. M. Hussain (Eds.), Green and sustainable advanced materials: Applications.

    Google Scholar 

  • Kanchi, S. (2014). Nanotechnology for water treatment. International Journal of Environmental Analytical Chemistry, 1(2). https://doi.org/10.4172/jreac.1000e102.

  • Kanel, S. R., Charlet, B., & Choi, L. (2005). Removal of As(III) from groundwater by nanoscale zerovalent iron. Environmental Science & Technology, 39, 1291–1298.

    Article  CAS  Google Scholar 

  • Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011.

  • Kim, E. S., & Deng, B. (2011). Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. Journal of Membrane Science, 375, 46–54.

    Article  CAS  Google Scholar 

  • Kim, E. S., Hwang, G., El-Din, M. G., & Liu, Y. (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science, 394, 37–48.

    Article  CAS  Google Scholar 

  • Kim, S. H., Lee SW Lee, G. M., Lee, B. T., Yun, S. T., & Kim, S. O. (2016). Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate. Chemosphere, 143, 106–114.

    Article  CAS  Google Scholar 

  • Koeppenkastrop, D., & Decarlo, E. H. (1993). Uptake of rare-earth elements from solution by metal-oxides. Environmental Science and Technology, 27(9), 1796–1802.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Koyuncu, I., Kural, E., & Topacik, D. (2001). Pilot scale nanofiltration membrane separation for waste management in textile industry. Water Science and Technology, 43(10), 233–240.

    Article  Google Scholar 

  • Kumar, V. S., Nagaraja, B. M., Shashikala, V., et al. (2004). Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. Journal of Molecular Catalysis A: Chemical, 223(1–2), 313–319, 2004.

    Article  CAS  Google Scholar 

  • Lee, Y., Kim, S., Venkateswaran, P., Jang, J., Kim, H., & Kim, J. (2008). Anion co-doped Titania for solar photocatalytic degradation of dyes. Carbon letters, 9, 131–136.

    Article  Google Scholar 

  • Lei, Y., Chen, F., Luo, Y., & Zhang, L. (2014). Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. Journal of Materials Science, 49(12), 4236–4245.

    Article  CAS  Google Scholar 

  • Lens, P. N. L., Virkutye, J., Jegatheesan, V., Kim, S. H., & Al-Abed, S. (2013). Nanotechnology for water and wastewater treatment. IWA Publishing.

    Google Scholar 

  • Li, Y. H., Ding, J., Luan, Z. K., Di, Z. C., Zhu, Y. F., Xu, C. L., Wu, D. H., & Wei, B. Q. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41, 2787–2792.

    Article  CAS  Google Scholar 

  • Li, L., Fan, M., Brown, R. C., Leeuwen, J. V., Wang, J., Wang, W., Wang, W., Song, Y., & Zhang, P. (2006a). Synthesis, properties and environmental application of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36, 405–431.

    Article  CAS  Google Scholar 

  • Li, X. Q., Elliot, D. W., & Zhang, W. X. (2006b). Zerovalent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.

    Article  CAS  Google Scholar 

  • Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42, 4591–4602. https://doi.org/10.1016/j.watres.2008.08.015.

    Article  CAS  Google Scholar 

  • Li, X., Xu, H., Chen, Z., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/270974.

    Google Scholar 

  • Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137(15), 362–374.

    Article  CAS  Google Scholar 

  • Lin, Y. H., & Tseng, W. L. (2010). Ultrasensitive sensing of Hg(2þ) and CH(3)Hg(þ) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Analytical Chemistry, 82(22), 9194–9200.

    Article  CAS  Google Scholar 

  • Lin, D. H., & Xing, B. S. (2008). Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environmental Science and Technology, 42(19), 7254–7259.

    Article  CAS  Google Scholar 

  • Lind, M. L., Ghosh, A. K., Jawor, A., Huang, X. F., Hou, W., Yang, Y., & Hoek, E. M. V. (2009a). Influence of zeolite crystal size on zeolitepolyamide thin film nanocomposite membranes. Langmuir, 25(17), 10139–10145.

    Article  CAS  Google Scholar 

  • Lind, M. L., Jeong, B. H., Subramani, A., Huang, X. F., & Hoek, E. M. V. (2009b). Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes. Journal of Materials Research, 24(5), 1624–1631.

    Article  CAS  Google Scholar 

  • Lind, M. L., Suk, D. E., Nguyen, T. V., & Hoek, E. M. V. (2010). Tailoring the structure of thin film nanocomposite membranes to achieve seawater RD membrane performance. Environmental Science and Technology, 44(21), 8230–8235.

    Article  CAS  Google Scholar 

  • Lisha, K. P., & Anshup Pradeep, T. (2009). Enhanced visual detection of pesticides using gold nanoparticles. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 44(7), 697–705.

    CAS  Google Scholar 

  • Liu, F., Zhang, G., Meng, Q., & Zhang, H. (2008). Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment. Chinese Journal of Chemical Engineering, 16(3), 441–445.

    Article  Google Scholar 

  • Liu, S. B., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R. R., Kong, J., & Chen, Y. (2011a). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.

    Article  CAS  Google Scholar 

  • Liu, S. W., Yu, J. G., & Jaroniec, M. (2011b). Anatase TiO(2) with dominant high-energy {001} facets: Synthesis, properties, and applications. Chemistry of Materials, 23(18), 4085–4093.

    Article  CAS  Google Scholar 

  • Liu, Z. Y., Bai, H. W., Lee, J., & Sun, D. D. (2011c). A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science, 4(7), 258–2585.

    Article  CAS  Google Scholar 

  • Lu, C., & Su, F. (2007). Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology, 58, 113–121.

    Article  CAS  Google Scholar 

  • Lu, C. S., Chiu, H., & Liu, C. T. (2006). Removal of zinc (II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial & Engineering Chemistry Research, 45(8), 2850–2855.

    Article  CAS  Google Scholar 

  • Lucas, E., Decker, S., Khaleel, A., Seitz, A., Fultz, S., Ponce, A., Li, W. F., Carnes, C., & Klabunde, K. J. (2001). Nanocrystalline metal oxides as unique chemical reagents/sorbents. Chemistry-A European Journal, 7(12), 2505–2510.

    Article  CAS  Google Scholar 

  • Mauter, M. S., & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science and Technology, 42(16), 5843–5859.

    Article  CAS  Google Scholar 

  • Mauter, M. S., Wang, Y., Okemgbo, K. C., Osuji, C. O., Giannelis, E. P., & Elimelech, M. (2011). Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces, 3(8), 2861–2868.

    Article  CAS  Google Scholar 

  • Maximous, N., Nakhla, G., Wong, K., & Wan, W. (2010). Optimization of Al(2)O(3)/PES membranes for wastewater filtration. Separation and Purification Technology, 73(2), 294–301.

    Article  CAS  Google Scholar 

  • Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., & Colvin, V. L. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1e2), 71–75.

    Article  CAS  Google Scholar 

  • Miklos, D. B., Zemy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Moon, G., Kim, D., Kim, H., Bokare, A. D., & Choi, W. (2014). Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environmental Science & Technology Letters, 1(2), 185–190.

    Article  CAS  Google Scholar 

  • Ngomsik, A. F., Bee, A., Talbot, D., & Cote, G. (2012). Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Separation and Purification Technology, 86, 1–8.

    Article  CAS  Google Scholar 

  • Nguyen, A. T., Hsieh, C. T., & Juang, R. S. (2016). Substituent effectsm on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation. Journal of the Taiwan Institute of Chemical Engineers, 62, 68–75.

    Article  CAS  Google Scholar 

  • Nora, S., & Mamadou, S. D. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7, 331–342.

    Article  CAS  Google Scholar 

  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environment and Earth Science, 59(2), 315–323.

    Article  CAS  Google Scholar 

  • Nowack, B., Krug, H. F., & Height, M. (2011). 120 years of nanosilver history: Implications for policy makers. Environmental Science & Technology, 45, 1177–1183.

    Article  CAS  Google Scholar 

  • Ohsaka, T., Shinozaki, K., Tsuruta, K., & Hirano, K. (2008). Photoelectrochemical degradation of some chlorinated organic compounds on n-TiO2 electrode. Chemosphere, 73(8), 1279–1283.

    Article  CAS  Google Scholar 

  • Onundi, Y. B., Mamun, A. A., Al Khatib, M. F., & Ahmed, Y. M. (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm Shell activated carbon. International Journal of Environmental Science and Technology, 7(4), 751–758.

    Article  CAS  Google Scholar 

  • Pacheco, S., & Rodriguez, R. (2001). Adsorption properties of metal ions using alumina nano particles in aqueous and alcoholic solution. Journal of Sol-Gel Science and Technology, 20, 263–273.

    Article  CAS  Google Scholar 

  • Pan, B., Lin, D. H., Mashayekhi, H., & Xing, B. S. (2008). Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials. Environmental Science and Technology, 42(15), 5480–5485.

    Article  CAS  Google Scholar 

  • Pan, B., & Xing, B. S. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science and Technology, 42(24), 9005–9013.

    Article  CAS  Google Scholar 

  • Pendergast, M. T. M., Nygaard, J. M., Ghosh, A. K., & Hoek, E. M. V. (2010). Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination, 261(3), 255–263.

    Article  CAS  Google Scholar 

  • Ponder, S. M., & Darab, J. G. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using nanoscale zerovalent iron. Environmental Science & Technology, 34, 2564–2569.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., Bucher, J. D., Craig, C. I., Davis, L., Stein, N. E., Lukens, W., Nitsche, H., Rao, L. F., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13, 479.

    Article  CAS  Google Scholar 

  • Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Application of nanotechnology in wastewater treatment. Wastewater Research, 47, 3931–3946.

    Article  CAS  Google Scholar 

  • Quang, D. V., Pradi, B., Sarawade, S. J., et al. (2013). Effective water disinfection using silver nanoparticle containing silica beads. Applied Surface Science, 287, 84–90.

    Article  CAS  Google Scholar 

  • Radwan, H., Elattar, S., & Khmes, R. (2011). Global water resources. In M. Aufleger & W. Rauch (Eds.), Handshake across the Jordan: Water and understanding international conference 26.9. – 28.9.2010, Pella, Jordanien (pp. 7–26).

    Google Scholar 

  • Ramakrishna, S., Fujihara, K., Teo, W. E., Yong, T., Ma, Z. W., & Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today, 9(3), 40–50.

    Article  CAS  Google Scholar 

  • Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 58(1), 224–231.

    Article  CAS  Google Scholar 

  • Rawal, S. B., Bera, S., Lee, D., Jang, D. J., & Lee, W. I. (2013). Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: Effect of their relative energy band positions on the photocatalytic efficiency. Catalysis Science and Technology, 3(7), 1822–1830.

    Article  CAS  Google Scholar 

  • Ren, X., Chen, C., Nagatsu, M., & Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170, 395–410.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Jei-Won, Y., Younghun, K., & Won-Ho, K. (2007). Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: Kinetics, isotherm and error analysis. Industrial and Engineering Chemistry Research, 46, 2834–2842.

    Article  CAS  Google Scholar 

  • Roco, M. C. (1999). Nanotechnology, shaping the world atom by atom. National Science and Technology Council, Committee on Technology, The Interagency Working Group on Nanoscience, Engineering and Technology, Washington, DC, USA.

    Google Scholar 

  • Savage, N., Wentsel, R., et al. (2008). Draft nanomaterial research strategy (NRS) (pp. 1–2). Washington, DC: Environmental Protection Agency.

    Google Scholar 

  • Sharma, V., & Sharma, A. (2012). Nanotechnology: An emerging future trend in wastewater treatment with its innovative products and processes. International Journal of Enhanced Research in Science Technology and Engineering, 1, 121–128.

    Google Scholar 

  • Sharma, V., & Sharma, A. (2013). Nanotechnology: An emerging future trend in wastewater treatment with its innovative products and processes. International Journal of Enhanced Research in Science Technology & Engineering, 1, 2.

    Google Scholar 

  • Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96.

    Article  CAS  Google Scholar 

  • Smith, A. (2009). Nanotechnology: An answer to the World’s water crisis? Chemistry International, 31(4), 137–139.

    Google Scholar 

  • Smith, A. D. (1997). Oxford dictionary of biochemistry and molecular biology. Oxford: Oxford University Press.

    Google Scholar 

  • Sylvester, P., Westerhoff, P., Mooller, T., Badruzzaman, M., & Boyd, O. (2007). A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environmental Engineering Science, 24(1), 104–112.

    Article  CAS  Google Scholar 

  • Sze, M. F. F., Lee, V. K. C., & McKay, G. (2008). Simplified fixed bed column model for adsorption of organic pollutants using tapered activated carbon columns. Desalination, 218, 323–333.

    Article  CAS  Google Scholar 

  • Tarun, K. N., Ashim, K. B., & Sudip, K. D. (2009). Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 333, 14–26.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Terronesa, M., Botello-Méndezb, A. R., Campos-Delgadoc, J., et al. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 5(4), 351–372.

    Article  CAS  Google Scholar 

  • Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34, 43–69.

    Article  CAS  Google Scholar 

  • Tiraferri, A., Vecitis, C. D., & Elimelech, M. (2011). Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Applied Materials & Interfaces, 3(8), 2869–2877.

    Article  CAS  Google Scholar 

  • Trivedi, P., & Axe, L. (2000). Modeling Cd and Zn sorption to hydrous metal oxides. Environmental Science and Technology, 34(11), 2215–2223.

    Article  CAS  Google Scholar 

  • Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes (Basel), 8(2). https://doi.org/10.3390/membranes8020018.

    Article  CAS  Google Scholar 

  • Valente, S., Bokhimi, X., & Toledo, J. A. (2004). Synthesis and catalytic properties of nanostructured aluminas obtained by sol-gel method. Appl Catal A, 264, 175–181.

    Article  CAS  Google Scholar 

  • Vaseashta, V., Vaclavikova, M., Vaseashta, V., Gallios, G., Roy, P., & Pummakarnchana, O. (2007). Nanostructures in environmental pollution detection, monitoring and remediation. Science and Technology of Advanced Materials, 8, 47–59.

    Article  CAS  Google Scholar 

  • Vijayageetha, V. A., Annamalai, V., & Pandiarajan, A. (2018). A study on the nanotechnology in water and waste water treatment. IOSR Journal of Applied Physics (IOSR-JAP), 10(4), 28–31.

    Google Scholar 

  • Wang, S. G., Gong, W. X., Liu, X. W., Yao, Y. W., Gao, B. Y., & Yue, Q. Y. (2007). Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Separation and Purification Technology, 58, 17–23.

    Article  CAS  Google Scholar 

  • Watlington, K. (2005). Emerging nanotechnologies for site remediation and wastewater treatment. National network for environmental management studies fellow, North Carolina State University.

    Google Scholar 

  • WHO. (2012). Progress on drinking water and sanitation. 2012 Update.

    Google Scholar 

  • Wu, M. K., Windeler, R. S., Steiner, C. K., Bros, T., & Friedlander, S. K. (1993). Controlled synthesis of nanosized particles by aerosol processes. Aerosol Science and Technology, 19, 527–548.

    Article  CAS  Google Scholar 

  • Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11), 7589–7593.

    Article  CAS  Google Scholar 

  • Yang, K., & Xing, B. S. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 110(10), 5989–6008.

    Article  CAS  Google Scholar 

  • Yang, K., Wu, W. H., Jing, Q. F., & Zhu, L. Z. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science and Technology, 42(21), 7931–7936.

    Article  CAS  Google Scholar 

  • Yang, L. X., Chen, B. B., Luo, S. L., Li, J. X., Liu, R. H., & Cai, Q. Y. (2010a). Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO(2) nanotube array through fluorescence resonance energy transfer. Environmental Science and Technology, 44(20), 7884–7889.

    Article  CAS  Google Scholar 

  • Yano, H., Omura, H., Honma, Y., Okumura, H., Sano, H., & Nakatsubo, F. (2018). Designing cellulose nanofiber surface for high density polyethylene reinforcement. Cellulose, 25(6), 3351–3362.

    Article  CAS  Google Scholar 

  • Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., Kan, A. T., Colvin, V. L., & Tomson, M. B. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.

    Article  CAS  Google Scholar 

  • Zekić, E., Vuković, Z., & Halkijević, I. (2018). Application of nanotechnology in wastewater treatment. GraÄ‘evinar, 70(4), 315–323.

    Google Scholar 

  • Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., & Alvarez, P. J. J. (2009). Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 43(3), 715–723.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D.V. et al. (2020). Wonders of Nanotechnology for Remediation of Polluted Aquatic Environs. In: Qadri, H., Bhat, R., Mehmood, M., Dar, G. (eds) Fresh Water Pollution Dynamics and Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_17

Download citation

Publish with us

Policies and ethics