Skip to main content

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

Abstract

In the companion volume, Kinetic Alfvén Wave: Theory, Experiment, and Application, we have presented the systematic theories and basic principles of kinetic Alfvén waves (KAWs) based on both kinetic and fluid descriptions of magnetic plasmas. The present volume builds upon that and proceeds into the in-depth analyses and discussions of observation, generation, and application of KAWs in various plasma environments in the solar-terrestrial coupling system, which is a unique natural laboratory for the comprehensive and thorough study of KAWs. However, first of all, in this introductory chapter we concisely review main physical properties of KAWs without proving, which are from the companion volume and set up the basis for the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., & Stegun, I. A. (1968). Handbook of mathematical functions with formulas, graphs and mathematical tables. New York: Dover Publications.

    MATH  Google Scholar 

  • Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150, 405–406.

    Article  ADS  Google Scholar 

  • Anderson, R. R., & Gurnett, D. A. (1973). Plasma wave observations near the plasmapause with the S3-A satellite. Journal of Geophysical Research, 78, 4756–4764.

    Article  ADS  Google Scholar 

  • Baldwin, D. E., & Ignat, D. W. (1969). Resonant absorption in zero-temperature nonuniform plasma. Physical Fluids, 12, 697.

    Article  ADS  Google Scholar 

  • Banks, P. M. (1967). Ion temperature in the upper atmosphere. Journal of Geophysical Research, 72, 3365–3385.

    Article  ADS  Google Scholar 

  • Barston, E. M. (1964). Electrostatic oscillations in inhomogeneous cold plasmas. Annals of Physics, 29, 282–303.

    Article  ADS  MathSciNet  Google Scholar 

  • Baumjohann, W., Paschmann, G., & Cattell, C. A. (1989). Average plasma properties in the central plasma sheet. Journal of Geophysical Research, 94, 6597–6606.

    Article  ADS  Google Scholar 

  • Belcher, J. W., & Davis, L. (1971). Large-amplitude Alfvén wave in the interplanetary medium. Journal of Geophysical Research, 76, 3534–3563.

    Article  ADS  Google Scholar 

  • Bellan, P. M., & Stasiewicz, K. (1998). Fine-scale cavitation of ionospheric plasma caused by inertial Alfvén wave ponderomoive force. Physical Review Letters, 80, 3523–3526.

    Article  ADS  Google Scholar 

  • Bespalov, P. A., Misonova, V. G., & Cowley, S. W. (2006). Field-aligned particle acceleration on auroral field lines by interaction with transient density cavities stimulated by kinetic Alfvén waves. Annales Geophysicae, 24, 2313–2329.

    Article  ADS  Google Scholar 

  • Bilitza, D. (1991). The use of transition heights for the representation of ion composition. Advances in Space Research, 11, 183–186.

    Article  ADS  Google Scholar 

  • Boldyrev, S., & Perez, J. C. (2012). Spectrum of kinetic-Alfvn turbulence. The Astrophysical Journal Letters, 758, L44.

    Article  ADS  Google Scholar 

  • Bostick, W. H., & Levine, M. (1952). Experimental demonstration in the laboratory of the existence of magneto-hydrodynamic waves in ionized helium. Physical Review, 94, 671–671.

    Article  ADS  Google Scholar 

  • Brodin, G., Stenflo, L., & Shukla, P. K. (2006). Nonlinear interactions between kinetic Alfvén and ion-sound waves. Solar Physics, 236, 285–291.

    Article  ADS  Google Scholar 

  • Burke, A. T., Maggs, J. E., & Morales, G. J. (2000a). Spontaneous fluctuations of a temperature filament in a magnetized plasma. Physical Review Letters, 84, 1451–1454.

    Article  ADS  Google Scholar 

  • Burke, A. T., Maggs, J. E., & Morales, G. J. (2000b). Experimental study of fluctuations excited by a narrow temperature filament in a magnetized plasma. Physical Plasmas, 7, 1397–1407.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Carlson, C. W., McFadden, J. P., et al. (2007a). How important are dispersive Alfvén waves for auroral electron acceleration? Geophysical Research Letters, 34, L07101.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Hull, A. J., Bonnell, J. W., et al. (2007b). Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora. Journal of Geophysical Research, 112, A05215.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Wilber, M., Mozer, F. S., et al. (2007c). Mode conversion and anomalous transport in kelvin-helmholtz vortices and kinetic Alfvén waves at the earth’s magnetopause. Physical Review Letters, 99, 175004.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Carlson, C. W., Peria, W. J., et al. (1999). FAST observations of inertial Alfvén waves in the dayside aurora. Geophysical Research Letters, 26, 647–650.

    Article  ADS  Google Scholar 

  • Chen, L. (1977). Parametric excitation of kinetic Alfvén waves by whistler waves. Plasma Physics, 19, 47–51.

    Article  ADS  Google Scholar 

  • Chen, L., & Hasegawa, A. (1974a). Plasma heating by spatial resonance of Alfvén wave. Physical Fluids, 17, 1399–1403.

    Article  ADS  Google Scholar 

  • Chen, L., & Hasegawa, A. (1974b). A theory of long-period magnetic pulsations, 1. Steady state excitation of filed line resonance. Journal of Geophysical Research, 79, 1024–1032.

    Article  ADS  Google Scholar 

  • Chen, L., & Wu, D. J. (2010). Kinetic Alfvén wave instability driven by electron temperature anisotropy in high-\(\beta \) plasmas. Physics of Plasmas, 17, 062107.

    Article  ADS  Google Scholar 

  • Chen, L., & Wu, D. J. (2011a). Exact solutions of dispersion equation for MHD waves with short-wavelength modification. Chinese Science Bulletin, 56, 955–961.

    Article  ADS  Google Scholar 

  • Chen, L., & Wu, D. J. (2011b). Polarizations of coupling kinetic Alfvén and slow waves. Physics of Plasmas, 18, 072110.

    Article  ADS  Google Scholar 

  • Chen, L., & Wu, D. J. (2012). Kinetic Alfvén wave instability driven by field-aligned currents in solar coronal loops. The Astrophysical Journal, 754, 123.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., & Hua, Y. P. (2011). Kinetic Alfvén wave instability driven by a field-aligned current in high-\(\beta \) plasmas. Physical Review E, 84, 046406.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., & Huang, J. (2013). Kinetic Alfvén wave instability driven by field-aligned currents in a low-\(\beta \) plasma. Journal of Geophysical Research, 118, 2951.

    Google Scholar 

  • Chen, L., Wu, D. J., Zhao, G. Q., et al. (2015). A possible mechanism for the formation of filamentous structures in magnetoplasmas by kinetic Alfvén waves. Journal of Geophysical Research, 120, 61–69.

    Google Scholar 

  • Chew, G. L., Goldberger, M. L., & Low, F. E. (1956). The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proceedings of the Royal Society of London A, 236, 112–118.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chmyrev, V. M., Bilichenko, S. V., Pokhotelov, O. A., et al. (1988). Alfvén vortices and related phenomena in the ionosphere and the magnetosphere. Search Results, 38, 841–854.

    Google Scholar 

  • Cho, J., Lazarian, A., & Vishniac, E. T. (2002). Simulation of magnetohydrodynamic turbulence in a strong magnetized medium. The Astrophysical Journal, 564, 291–301.

    Article  ADS  Google Scholar 

  • Dennett-Thorpe, J., & de Bruyn, A. G. (2003). Annual modulation in the scattering of J1819+3845: Peculiar plasma velocity and anisotropy. Astronomy and Astrophysics, 404, 113–132.

    Article  ADS  Google Scholar 

  • Duan, S. P., Li, Z. Y., & Liu, Z. X. (2005). Kinetic Alfvén wave driven by the density inhomogeneity in the presence of loss-cone distribution function-particle aspect analysis. Planetary and Space Science, 53, 1167–1173.

    Article  ADS  Google Scholar 

  • Duan, S. P., Liu, Z. X., & Angelopoulos, V. (2012). Observations of kinetic Alfvén waves by THEMIS near a substorm onset. Chinese Science Bulletin, 57, 1429–1435.

    Article  ADS  Google Scholar 

  • Eastman, T. E., Frank, L. A., Peterson, W. K., & Lennartsson, W. (1984). The plasma sheet boundary layer. Journal of Geophysical Research, 89, 1553–1572.

    Article  ADS  Google Scholar 

  • Fedun, V. N., Yukhimuk, A. K., & Voitsekhovskaya, A. D. (2004). The transformation of MHD Alfvén waves in space plasma. Journal of Plasma Physics, 70, 699–707.

    Article  ADS  Google Scholar 

  • Frank, L. A., Ackerson, K. L., & Lepping, R. P. (1976). On hot tenuous plasmas, fireballs, and boundary layers in the earth’s magnetotail. Journal of Geophysical Research, 81, 5859–5881.

    Article  ADS  Google Scholar 

  • Gary, S. P., & Smith, C. W. (2009). Short-wavelength turbulence in the solar wind: linear theory of whistler and kinetic Alfvén fluctuations. Journal of Geophysical Research, 114, A12105.

    Article  ADS  Google Scholar 

  • Gekelman, W. (1999). Review of laboratory experiments on Alfvén waves and their relationship to space observations. Journal of Geophysical Research, 104, 14417–14435.

    Article  ADS  Google Scholar 

  • Gekelman, W., Leneman, D., Maggs, J. E., & Vincena, S. (1994). Experimental observation of Alfvén cones. Physics of Plasmas, 1, 3775–3783.

    Article  ADS  Google Scholar 

  • Gekelman, W., Vincena, S., Leneman, D., & Maggs, J. (1997). Laboratory experiments on shear Alfvén waves and their relationship to space plasmas. Physics of Plasmas, 102, 7225–7236.

    Google Scholar 

  • Gekelman, W., Vincena, S., Palmer, N., et al. (2000). Experimental measurements of the propagation of large amplitude shear Alfvén waves. Plasma Physics and Controlled Fusion, 42, B15–B26.

    Article  ADS  Google Scholar 

  • Goertz, C. K. (1984). Kinetic Alfvén waves on auroral field lines. Planetary and Space Science, 32, 1387–1392.

    Article  ADS  Google Scholar 

  • Goertz, C. K., & Boswell, R. W. (1979). Magnetosphere-ionosphere coupling. Journal of Geophysical Research, 84, 7239–7246.

    Article  ADS  Google Scholar 

  • Golant, V. E., & Piliya, A. D. (1972). Reviews of topical problems: linear transformation and absorption of waves in a plasma, soviet phys. Uspekhi, 14, 413–437.

    Article  Google Scholar 

  • Goldreich, P., & Sridhar, S. (1995). Towards a theory of interstellar turbulence. II. strong Alfvénic turbulence. Astrophys. J., 438, 763–775.

    Article  ADS  Google Scholar 

  • Goldreich, P., & Sridhar, S. (1997). Magnetohydrodynamic turbulence revisited. Astrophys. J., 485, 680–688.

    Article  ADS  Google Scholar 

  • Golub, L., Herant, M., Kalata, K., et al. (1990). Sub-arcsecond observations of the solar X-ray corona. Nature, 344, 842–844.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. Journal of Geophysical Research, 81, 5083–5090.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1975). Kinetic process of plasma heating due to Alfvén wave excitation. Physical Review Letters, 35, 370–373.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1976a). Kinetic process of plasma heating by resonant mode conversion of Alfvén wave. Physics of Fluids, 19, 1924–1934.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Mima, K. (1978). Anomalous transport produce by kinetic Alfvén wave turbulence. Journal of Geophysical Research, 83, 1117–1123.

    Article  ADS  Google Scholar 

  • Herlofson, N. (1950). Magnetohydrodynamic waves in a compressible fluid conductor. Nature, 165, 1020–1021.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hollweg, J. V. (1999). Kinetic Alfvén waves revisited. Journal of Geophysical Research, 104, 14811–14819.

    Article  ADS  Google Scholar 

  • Huang, G. L., Wang, D. Y., Wu, D. J., et al. (1997). The eigenmode of solitary kinetic Alfvén waves by Freja satellite. Journal of Geophysical Research, 102, 7217–7224.

    Article  ADS  Google Scholar 

  • Hudson, M. K., Lysak, R. L., & Mozer, F. S. (1978). Magnetic field-aligned potential drops due to electrostatic ion cyclotron turbulence. Geophysical Research Letters, 5, 143–146.

    Article  ADS  Google Scholar 

  • Johnson, J. R., & Cheng, C. Z. (1997). Kinetic Alfvén waves and plasma transport at the magnetopause. Geophysical Research Letters, 24, 1423–1426.

    Article  ADS  Google Scholar 

  • Johnson, J. R., & Cheng, C. Z. (2001). Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophysical Research Letters, 28, 4421–4424.

    Article  ADS  Google Scholar 

  • Johnson, J. R., Cheng, C. Z., & Song, P. (2001). Signatures of mode conversion and kinetic Alfvén waves at the magnetopause. Geophysical Research Letters, 28, 227–230.

    Article  ADS  Google Scholar 

  • Kivelson, M. G., & Southwood, D. J. (1986). Coupling of global magnetospheric MHD eigenmodes to field line resonance. Journal of Geophysical Research, 91, 4345–4351.

    Article  ADS  Google Scholar 

  • Kletzing, C. A. (1994). Electron acceleration by kinetic Alfvén waves. Journal of Geophysical Research, 99, 11095–11103.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Bounds, S. R., Martin-Hiner, J., et al. (2003a). Measurements of the shear Alfvén wave dispersion for finite perpendicular wave number. Physical Review Letters, 90, 035004.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Mozer, F. S., & Torbert, R. B. (1998). Electron temperature and density at high latitude. Journal of Geophysical Research, 103, 14837–14845.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Scudder, J. D., Dors, E. E., & Curto, C. (2003b). Auroral source region: Plasma properties of the high-latitude plasma sheet. Journal of Geophysical Research, 108, 1360–1375.

    Article  Google Scholar 

  • Leamon, R. J., Smith, C. W., Ness, N. F., et al. (1999). Dissipation range dynamics: Kinetic Alfvén waves and the importance of \(\beta _e\). Journal of Geophysical Research, 104, 22331–22344.

    Article  ADS  Google Scholar 

  • Lee, L. C., Johnson, J. R., & Ma, Z. W. (1994). Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. Journal of Geophysical Research, 99, 17405–17411.

    Article  ADS  Google Scholar 

  • Leneman, D., Gekelman, W., & Maggs, J. E. (1999). Laboratory observations of shear Alfvén waves launched from a small source. Physical Review Letters, 82, 2673–2676.

    Article  ADS  Google Scholar 

  • Louarn, P., Wahlund, J. E., Chust, T., et al. (1994). Observations of kinetic Alfvén waves by the Freja spacecraft. Physical Review Letters, 21, 1847–1850.

    Google Scholar 

  • Luo, Q. Y., & Wu, D. J. (2010). Observations of anisotropic scaling of solar wind turbulence. The Astrophysical Journal Letters, 714, L138.

    Article  ADS  Google Scholar 

  • Luo, Q. Y., Wu, D. J., & Yang, L. (2011). Measurement of intermittency of anisotropic magnetohydrodynamic turbulence in high-speed solar wind. The Astrophysical Journal Letters, 733, L22.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Carlson, C. W. (1981). Effect of microscopic turbulence on magnetosphere-ionosphere coupling. Geophys. Res. Lett., 8, 269–272.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Dum, C. T. (1983). Dynamics of magnetosphere-ionosphere coupling including turbulent transport. Journal of Geophysical Research, 88, 365–380.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Lotko, W. (1996). On the kinetic dispersion relation for shear Alfvén waves. Journal of Geophysical Research, 101, 5085–5094.

    Article  ADS  Google Scholar 

  • Maggs, J. E., & Morales, G. J. (1996). Magnetic fluctuations associated field-aligned striations. Geophysical Research Letters, 23, 633–636.

    Article  ADS  Google Scholar 

  • Maggs, J. E., Morales, G. J., & Gekelman, W. (1997). Laboratory studies of field-aligned density striations and their relationship to auroral processes. Physics of Plasmas, 4, 1881–1888.

    Article  ADS  Google Scholar 

  • Malik, M., & Sharma, R. (2005). Nonlinear evolution of kinetic Alfvén waves and filament formation. Solar Physics, 229, 287–304.

    Article  ADS  Google Scholar 

  • Malik, M., Sharma, R. P., & Singh, H. D. (2007). Ion-acoustic wave generation by two kinetic Alfvén waves and particle heating. Solar Physics, 241, 317–328.

    Article  ADS  Google Scholar 

  • Maron, J., & Goldreich, P. (2001). Simulations of incompressible magnetohydrodynamic turbulence. The Astrophysical Journal, 554, 1175–1196.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., Goldstein, M. L., & Roberts, D. A. (1990). Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. Journal of Geophysical Research, 95, 20673–20683.

    Article  ADS  Google Scholar 

  • Mitchell, C., Vincena, S., Maggs, J. E., & Gekelman, W. (2001). Laboratory observation of Alfvén resonance. Geophysical Research Letters, 28, 923–926.

    Article  ADS  Google Scholar 

  • Nickel, J. C., Parker, J. V., & Gould, R. W. (1963). Resonance Oscillations in a Hot Nonuniform Plasma Column. Physical Review Letters, 11, 183.

    Article  ADS  Google Scholar 

  • Papadopoulos, K., Sharma, R. R., & Tripathi, V. K. (1982). Parametric excitation of Alfvén waves in the ionosphere. Journal of Geophysical Research, 87, 1491–1494.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958). Dynamic instability of an anisotropic ionized gas of low density. Physical Review, 109, 1874–1876.

    Article  ADS  MATH  Google Scholar 

  • Patel, V. L., Tripathi, V. K., & Sharma, O. P. (1985). Parametric excitation of shear Alfvén modes by electrostatic ion cyclotron waves in the magnetosphere. Journal of Geophysical Research, 90, 9590–9594.

    Article  ADS  Google Scholar 

  • Podesta, J. J. (2013). Evidence of Kinetic Alfvén waves in the solar wind at 1 AU. Solar Physics, 286, 529–548.

    Article  ADS  Google Scholar 

  • Podesta, J. J., & TenBarge, J. M. (2012). Scale dependence of the variance anisotropy near the proton gyroradius scale: Additional evidence for kinetic Alfvén waves in the solar wind at 1 AU. Journal of Geophysical Research, 117, A10106.

    ADS  Google Scholar 

  • Podesta, J. J., Borovsky, J. E., & Gary, S. P. (2010). A Kinetic Alfvén wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU. The Astrophysical Journal, 712, 685–691.

    Article  ADS  Google Scholar 

  • Pu, Z. Y., & Zhou, Y. (1986). The kinetic Alfvén wave instability driven by a sheared plasma flow and the associated anomalous transport. Scientia Sinica A, 29, 301–311.

    Google Scholar 

  • Rickett, B. J., Kedziora-Chudczer, L., & Jauncey, D. L. (2002). Interstellar scintillation of the polarized flux density in quasar PKS 0405–385. The Astrophysical Journal, 581, 103–126.

    Article  ADS  Google Scholar 

  • Rosenbluth, M. N. (1956). Stability of the pinch, Los Alamos Science Lab, LA-2030.

    Google Scholar 

  • Rudakov, L., Mithaiwala, M., Ganguli, G., et al. (2011). Linear and nonlinear landau resonance of kinetic Alfvén waves: Consequences for electron distribution and wave spectrum in the solar wind. Physics of Plasmas, 18, 012307.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M. L., Belmont, G., et al. (2010). Three dimensional anisotropic k-spectra of turbulence at sub-proton scales in the solar wind. Physical Review Letters, 105, 131101.

    Article  ADS  Google Scholar 

  • Salem, C. S., Howes, G. G., Sundkvist, D., et al. (2012). Identification of kinetic Alfvén wave turbulence in the solar wind. The Astrophysical Journal Letters, 745, L9.

    Article  ADS  Google Scholar 

  • Schriver, D., Ashour-Abdalla, M., & Richard, R. L. (1998). On the origin of the ion-electron temperature difference in the plasma sheet. Journal of Geophysical Research, 103, 14879–14895.

    Article  ADS  Google Scholar 

  • Sedlácek, Z. (1971a). Electrostatic oscillations in cold inhomogeneous plasma I: Differential equation approach. Journal of Plasma Physics, 5, 239–263.

    Article  ADS  Google Scholar 

  • Sedlácek, Z. (1971b). Electrostatic oscillations in cold inhomogeneous plasma Part 2: Integral equation approach. Journal of Plasma Physics, 6, 189–199.

    Article  ADS  Google Scholar 

  • Sharma, A., & Tripathi, V. K. (1988). Excitation of kinetic Alfvén waves in the ion-Bernstein wave heating of a plasma. Physics of Fluids, 31, 3697–3701.

    Article  ADS  MATH  Google Scholar 

  • Sharma, R. P., & Malik, M. (2006). Nonlinear interaction of the kinetic Alfvén waves and the filamentation process in the solar wind plasma. Astronomy and Astrophysics, 457, 675–680.

    Article  ADS  Google Scholar 

  • Sharma, R. P., & Singh, H. D. (2009). Density cavities associated with inertial Alfvén waves in the auroral plasma. Journal of Geophysical Research, 114, A03109.

    Article  ADS  Google Scholar 

  • Shukla, P. K., & Mamedow, M. A. (1978). Nonlinear decay of a propagating lower-hybrid wave in a plasma. Journal of Plasma Physics, 19, 87–96.

    Article  ADS  Google Scholar 

  • Singh, H. D. (2007). Interpretation of solar wind reconnection exhaust in terms of kinetic Alfveń wave group-velocity cones. Geophysical Research Letters, 34, L13106.

    ADS  Google Scholar 

  • Singh, H. D., & Sharma, R. P. (2007). Generation of coherent wave packets of kinetic Alfvén waves in solar plasmas. Physics of Plasmas, 14, 102304.

    Article  ADS  Google Scholar 

  • Slavin, J. A., Smith, E. J., Sibeck, D. G., et al. (1985). An ISEE 3 study of average and substorm conditions in the distant magnetotail. Journal of Geophysical Research, 90, 10875–10895.

    Article  ADS  Google Scholar 

  • Smith, C. W., Vasquez, B. J., & Hollweg, J. V. (2012). Observational constraints on the role of cyclotron damping and kinetic Alfvén waves in the solar wind. The Astrophysical Journal, 745, 8.

    Article  ADS  Google Scholar 

  • Sridhar, S., & Goldreich, P. (1994). Towards a theory of interstellar turbulence I. weak Alfvénic turbulence. The Astrophysical Journal, 432, 612–621.

    Article  ADS  Google Scholar 

  • Stasiewicz, K. (2006). Heating of the solar corona by dissipative Alfvén solitons. Physical Review Letters, 96, 175003.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al. (2000a). Small scale Alfvénic structure in the aurora. Space Science Reviews, 92, 423–533.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Gustafsson, G., Marklund, G., et al. (1997). Cavity resonators and Alfvén resonance cones observed on Freja. Journal of Geophysical Research, 102, 2565–2575.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Holmgren, G., & Zanetti, L. (1998). Density depletions and current singularities observed by Freja. Journal of Geophysical Research, 103, 4251–4260.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., & Wahlund, J. E. (2000b). Identification of widespread turbulence of dispersive Alfvén waves. Geophysical Research Letters, 27, 173–176.

    Google Scholar 

  • Stefant, R. J. (1970). Alfvén wave damping from finite gyroradius coupling to the ion acoustic mode. Physics of Fluids, 13, 440–450.

    Article  ADS  Google Scholar 

  • Streltsov, A., & Lotko, W. (1995). Dispersive field line resonances on auroral field lines. Journal of Geophysical Research, 100, 19457–19472.

    Article  ADS  Google Scholar 

  • Takahashi, K., & Hones, E. W, Jr. (1988). ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. Journal of Geophysical Research, 93, 8558–8582.

    Article  ADS  Google Scholar 

  • Tiwari, B. V., Mishra, R., Varma, P., & Tiwari, M. S. (2006). Generation of kinetic Alfvén wave by velocity shear in the plasma sheet boundary layer during substorm. Indian Journal of Pure & Applied Physics, 44, 917–926.

    Article  Google Scholar 

  • Tiwari, B. V., Mishra, R., Varma, P., & Tiwari, M. S. (2008). Shear driven kinetic Alfvén wave with general loss-cone distribution function in the plasma sheet boundary layer. Earth Moon Planet, 103, 43–63.

    Article  ADS  MATH  Google Scholar 

  • Tripathi, Y. K., & Sharma, R. P. (1988). Some parametric instabilities of an ordinary electromagnetic wave in magnetized plasmas. Physical Review A, 38, 2991–2995.

    Article  ADS  Google Scholar 

  • Trotter, A. S., Moran, J. M., & Rodriguez, L. F. (1998). Anistropic radio scattering of NGC 6334B. The Astrophysical Journal, 493, 666–679.

    Article  ADS  Google Scholar 

  • Tsiklauri, D. (2011). Particle acceleration by circularly and elliptically polarised dispersive Alfvén waves in a transversely inhomogeneous plasma in the inertial and kinetic regimes. Physics of Plasmas, 18, 092903.

    Article  ADS  Google Scholar 

  • Tsiklauri, D. (2012). Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfvén waves in a transversely inhomogeneous plasma. Physics of Plasmas, 19, 082903.

    Article  ADS  Google Scholar 

  • Varma, P., Mishra, S. P., Ahirwar, G., & Tiwari, M. S. (2007). Effect of parallel electric field on Alfvén wave in thermal magnetoplasma. Planetary and Space Science, 55, 174–180.

    Article  ADS  Google Scholar 

  • Vincena, S., Gekelman, W., & Maggs, J. E. (2004). Shear Alfvén wave perpendicular propagation from the kinetic to the inertial regime. Physical Review Letters, 93, 105003.

    Article  ADS  Google Scholar 

  • Voitenko, Y. (1998). Excitation of kinetic Alfvén waves in a flaring loop. Solar Physics, 182, 411–430.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & De Keyser, J. (2011). Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence. Nonlinear Processes in Geophysics, 18, 587–597.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2002). Nonlinear excitation of small-scale Alfvén waves by fast waves and plasma heating in the solar atmosphere. Solar Physics, 209, 37–60.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2004). Cross-field heating of coronal ions by low-frequency kinetic Alfvén waves. The Astrophysical Journal, 605, L149–L152.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2005a). Cross-scale nonlinear coupling and plasma energization by Alfvén waves. Physical Review Letters, 94, 135003.

    Article  ADS  Google Scholar 

  • Voitenko, Y. & Goossens, M. (2005b). Nonlinear coupling of Alfvén waves with widely different cross-field wavelengths in space plasmas. Journal of Geophysical Research, 110 A10S01.

    Google Scholar 

  • Voitenko, Y., & Goossens, M. (2006). Energization of plasma species by intermittent kinetic Alfvén waves. Space Science Reviews, 122, 255–270.

    Article  ADS  Google Scholar 

  • Voitenko, Y., Goossens, M., Sirenko, O., & Chian, A. (2003). Nonlinear excitation of kinetic Alfvén waves and whistler waves by electron beam-driven Langmuir waves in the solar corona. Astronomy & Astrophysics, 409, 331–345.

    Article  ADS  Google Scholar 

  • Volwerk, M., Louarn, P., Chust, T., et al. (1996). Solitary kinetic Alfvén waves-A study of the Poynting flux. Journal of Geophysical Research, 101, 13335–13343.

    Article  ADS  Google Scholar 

  • Wahlund, J. E., Louarn, P., Chust, T., et al. (1994a). On ion-acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophysical Research Letters, 21, 1831–1834.

    Article  ADS  Google Scholar 

  • Wang, X. G., Ren, L. W., Wang, J. Q., & Xiao, C. J. (2009). Synthetic solar coronal heating on current sheets. The Astrophysical Journal, 694, 1595–1601.

    Article  ADS  Google Scholar 

  • Wilkinson, P. N., Narayan, R., & Spencer, R. E. (1994). The scatter-broadened image of Cygnus X-3. Monthly Notices of the Royal Astronomical Society, 269, 67–88.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2003a). Effects of ion temperature and inertia on kinetic Alfvén waves. Communications in Theoretical Physics, 39, 457–464.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2003b). Model of nonlinear kinetic Alfvén waves with dissipation and acceleration of energetic electrons. Physical Review E, 67, 027402.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2003c). Dissipative solitary kinetic Alfvén waves and electron acceleration. Physics of Plasmas, 10, 1364–1370.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2005). Dissipative solitary kinetic Alfvén waves and electron acceleration in the solar corona. Space Science Reviews, 121, 333–342.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2012). Kinetic Alfvén Wave: Theory. Experiment and Application: Science Press, Beijing.

    Google Scholar 

  • Wu, D. J., & Chao, J. K. (2003). Auroral electron acceleration by dissipative solitary kinetic Alfvén waves. Physics of Plasmas, 10, 3787–3789.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chao, J. K. (2004a). Model of auroral electron acceleration by dissipative solitary kinetic Alfvén wave. Journal of Geophysical Research, 109, A06211.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chao, J. K. (2004b). Recent progress in nonlinear kinetic Alfvén waves. Nonlinear Processes in Geophysics, 11, 631–645.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chen, L. (2013). Excitation of kinetic Alfvén waves by density striation in magneto-plasmas. The Astrophysical Journal, 771, 3.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Fang, C. (1999). Two-fluid motion of plasma in Alfvén waves and heating of solar coronal loops. The Astrophysical Journal, 511, 958–964.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Fang, C. (2003). Coronal plume heating and kinetic dissipation of kinetic Alfvén waves. The Astrophysical Journal, 596, 656–662.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Fang, C. (2007). Sunspot chromospheric heating by kinetic Alfvén waves. The Astrophysical Journal, 659, L181–L184.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Wang, D. Y. (1996). Solitary kinetic Alfvén waves on the ion-acoustic velocity branch in a low-\(\beta \) plasma. Physics of Plasmas, 3, 4304–4306.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Yang, L. (2006). Anisotropic and mass-dependent energization of heavy ions by kinetic Alfvén waves. Astronomy & Astrophysics, 452, L7–L10.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Yang, L. (2007). Nonlinear interaction of minor heavy ions and kinetic Alfvén waves and their anisotropic energization in coronal holes. The Astrophysical Journal, 659, 1693–1701.

    Article  ADS  Google Scholar 

  • Wu, B. H., Wang, J. M., & Lee, L. C. (2001). Generation of kinetic Alfvén waves by mirror instability. Geophysical Research Letters, 28, 3051–3054.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., Wang, D. Y., & Fälthammar, C. G. (1996a). Solitary kinetic Alfvén waves in the two-fluid model. Physics of Plasmas, 3, 2879–2884.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., & Wang, D. Y. (1996b). Dipole density solitons and solitary dipole vortices in an inhomogeneous space plasma. Physical Review Letters, 77, 4346–4349.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, J., Tang, J. F., & Yan, Y. H. (2007). Solar microwave drifting spikes and solitary kinetic Alfvén waves. The Astrophysical Journal, 665, L171–L174.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Fälthammar, C. G. (1996c). Coulpling Alfvénic and ion-acoustic solitons. Chinese Physics Letters, 13, 594–597.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Huang, G. L. (1997). Two dimensional solitary kinetic Alfvén waves and dipole vortex structures. Physics of Plasmas, 4, 611–617.

    Article  ADS  Google Scholar 

  • Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2002). Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 \(R_E\) altitudes in the plasma sheet boundary layer. Journal of Geophysical Research, 107, 1201–1215.

    Article  Google Scholar 

  • Yang, L., Wu, D. J., Wang, S. J., & Lee, L. C. (2014). Comparison of two-fluid and gyrokinetic models for kinetic Alfvén waves in solar and space plasmas. The Astrophysical Journal, 792, 36.

    Article  ADS  Google Scholar 

  • Yoon, P. H., Wu, C. S., & de Assis, A. S. (1993). Effect of finite ion gyroradius on the fire-hose instability in a high beta plasma. Physics Fluids B, 5, 1971–1979.

    Article  ADS  Google Scholar 

  • Yukhimuk, V., Voitenko, Y., Fedun, V., & Yukhimuk, A. (1998). Generation of kinetic Alfvén waves by upper-hybrid pump waves. Journal of Plasma Physics, 60, 485–495.

    Article  ADS  Google Scholar 

  • Zhao, J. S., Wu, D. J., & Lu, J. Y. (2011). Kinetic Alfvén waves excited by oblique MHD Alfvén waves in coronal holes. The Astrophysical Journal, 735, 114.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Nanjing University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DJ., Chen, L. (2020). Basic Physical Properties of KAWs. In: Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-7989-5_1

Download citation

Publish with us

Policies and ethics