Skip to main content
Log in

Evidence of Kinetic Alfvén Waves in the Solar Wind at 1 AU

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Several independent lines of observational evidence of the existence of kinetic Alfvén waves (KAWs) in the solar wind are briefly reviewed. Each piece of evidence is inconclusive when considered separately, but when taken together, it is reasonable to conclude from these observations that KAWs in the form of kinetic Alfvén turbulence are almost always present in the free-flowing solar wind near 1 AU and, by inference, perhaps throughout much of the heliosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. The perpendicular spectrum is defined at the end of the Introduction.

  2. See the left-hand side of p. 65 of Denskat, Beinroth, and Neubauer (1983).

References

  • Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Universality of solar wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003. doi: 10.1103/PhysRevLett.103.165003 .

    Article  ADS  Google Scholar 

  • Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Schwartz, S.J., Mitchell, J., Grappin, R., Robert, P.: 2010, Solar wind turbulent spectrum from MHD to electron scales. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 144 – 147. doi: 10.1063/1.3395821 .

    Google Scholar 

  • Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: 2005, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002. doi: 10.1103/PhysRevLett.94.215002 .

    Article  ADS  Google Scholar 

  • Behannon, K.W.: 1976, Observations of the interplanetary magnetic field between 0.46 and 1 AU by the Mariner 10 spacecraft. Ph.D. thesis, Catholic University of America, NASA-TM-X-71043.

  • Beinroth, H.J., Neubauer, F.M.: 1981, Properties of whistler mode waves between 0.3 and 1.0 AU from HELIOS observations. J. Geophys. Res. 86, 7755 – 7760. doi: 10.1029/JA086iA09p07755 .

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 – 3563. doi: 10.1029/JA076i016p03534 .

    Article  ADS  Google Scholar 

  • Biskamp, D., Schwarz, E., Zeiler, A., Celani, A., Drake, J.F.: 1999, Electron magnetohydrodynamic turbulence. Phys. Plasmas 6, 751 – 758. doi: 10.1063/1.873312 .

    Article  MathSciNet  ADS  Google Scholar 

  • Boldyrev, S., Perez, J.C.: 2012, Spectrum of kinetic-Alfvén turbulence. Astrophys. J. Lett. 758, L44. doi: 10.1088/2041-8205/758/2/L44 .

    Article  ADS  Google Scholar 

  • Celnikier, L.M., Muschietti, L., Goldman, M.V.: 1987, Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181, 138 – 154.

    ADS  Google Scholar 

  • Celnikier, L.M., Harvey, C.C., Jegou, R., Moricet, P., Kemp, M.: 1983, A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293 – 298.

    ADS  Google Scholar 

  • Chandran, B.D.G.: 2010, Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J. 720, 548 – 554. doi: 10.1088/0004-637X/720/1/548 .

    Article  ADS  Google Scholar 

  • Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., Pongkitiwanichakul, P.: 2009, Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements. Astrophys. J. 707, 1668 – 1675. doi: 10.1088/0004-637X/707/2/1668 .

    Article  ADS  Google Scholar 

  • Chandran, B.D.G., Li, B., Rogers, B.N., Quataert, E., Germaschewski, K.: 2010, Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503 – 515. doi: 10.1088/0004-637X/720/1/503 .

    Article  ADS  Google Scholar 

  • Chen, C.H.K., Horbury, T.S., Schekochihin, A.A., Wicks, R.T., Alexandrova, O., Mitchell, J.: 2010, Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002. doi: 10.1103/PhysRevLett.104.255002 .

    Article  ADS  Google Scholar 

  • Chen, C.H.K., Salem, C.S., Bonnell, J.W., Mozer, F.S., Bale, S.D.: 2012, Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109, 035001. doi: 10.1103/PhysRevLett.109.035001 .

    Article  ADS  Google Scholar 

  • Chen, L., Lin, Z., White, R.: 2001, On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 4713 – 4716. doi: 10.1063/1.1406939 .

    Article  ADS  Google Scholar 

  • Cho, J., Lazarian, A.: 2004, The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. Lett. 615, L41 – L44. doi: 10.1086/425215 .

    Article  ADS  Google Scholar 

  • Cho, J., Lazarian, A.: 2009, Simulations of electron magnetohydrodynamic turbulence. Astrophys. J. 701, 236 – 252. doi: 10.1088/0004-637X/701/1/236 .

    Article  ADS  Google Scholar 

  • Cho, J., Vishniac, E.T.: 2000, The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273 – 282. doi: 10.1086/309213 .

    Article  ADS  Google Scholar 

  • Coleman, P.J. Jr.: 1967, Wave-like phenomena in the interplanetary plasma: Mariner 2. Planet. Space Sci. 15, 953 – 973. doi: 10.1016/0032-0633(67)90166-3 .

    Article  ADS  Google Scholar 

  • Coleman, P.J. Jr.: 1968, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 – 388. doi: 10.1086/149674 .

    Article  ADS  Google Scholar 

  • Cornilleau-Wehrlin, N., Chanteur, G., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Villedary, C., Canu, P., Maksimovic, M., de Conchy, Y., Lacombe, D.H.C., Lefeuvre, F., Parrot, M., Pinçon, J.L., Décréau, P.M.E., Harvey, C.C., Louarn, P., Santolik, O., Alleyne, H.S.C., Roth, M., Chust, T., Le Contel, O., (Staff Team): 2003, First results obtained by the cluster STAFF experiment. Ann. Geophys. 21, 437 – 456. doi: 10.5194/angeo-21-437-2003 .

    Article  ADS  Google Scholar 

  • Cranmer, S.R., van Ballegooijen, A.A.: 2003, Alfvénic turbulence in the extended solar corona: kinetic effects and proton heating. Astrophys. J. 594, 573 – 591. doi: 10.1086/376777 .

    Article  ADS  Google Scholar 

  • Denskat, K.U., Beinroth, H.J., Neubauer, F.M.: 1983, Interplanetary magnetic field power spectra with frequencies from 2.4 X 10 to the −5th HZ to 470 HZ from HELIOS-observations during solar minimum conditions. J. Geophys. 54, 60 – 67.

    Google Scholar 

  • Denton, R.E., Gary, S.P., Li, X., Anderson, B.J., Labelle, J.W., Lessard, M.: 1995, Low-frequency fluctuations in the magnetosheath near the magnetopause. J. Geophys. Res. 100, 5665 – 5679. doi: 10.1029/94JA03024 .

    Article  ADS  Google Scholar 

  • Forman, M.A., Wicks, R.T., Horbury, T.S.: 2011, Detailed fit of “critical balance” theory to solar wind turbulence measurements. Astrophys. J. 733, 76. doi: 10.1088/0004-637X/733/2/76 .

    Article  ADS  Google Scholar 

  • Gary, S.P.: 1986, Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility, and helicity. J. Plasma Phys. 35, 431 – 447. doi: 10.1017/S0022377800011442 .

    Article  ADS  Google Scholar 

  • Gary, S.P.: 1993, Theory of Space Plasma Microinstabilities, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gary, S.P.: 1999, Collisionless dissipation wavenumber: linear theory. J. Geophys. Res. 104, 6759 – 6762. doi: 10.1029/1998JA900161 .

    Article  ADS  Google Scholar 

  • Gary, S.P., Smith, C.W.: 2009, Short-wavelength turbulence in the solar wind: linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. 114, A12105. doi: 10.1029/2009JA014525 .

    Article  ADS  Google Scholar 

  • Gary, S.P., Winske, D.: 1992, Correlation function ratios and the identification of space plasma instabilities. J. Geophys. Res. 97, 3103 – 3111. doi: 10.1029/91JA02752 .

    Article  ADS  Google Scholar 

  • Goldreich, P., Sridhar, S.: 1995, Toward a theory of interstellar turbulence. 2: Strong Alfvenic turbulence. Astrophys. J. 438, 763 – 775. doi: 10.1086/175121 .

    Article  ADS  Google Scholar 

  • Goldreich, P., Sridhar, S.: 1997, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680 – 688. doi: 10.1086/304442 .

    Article  ADS  Google Scholar 

  • Goldstein, M.L., Roberts, D.A., Fitch, C.A.: 1994, Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519 – 11538. doi: 10.1029/94JA00789 .

    Article  ADS  Google Scholar 

  • Gurnett, D.A.: 1991, Waves and instabilities. In: Schwenn, R., Marsch, E. (eds.) Physics of the Inner Heliosphere II, Springer, Berlin, 135 – 157.

    Chapter  Google Scholar 

  • Hamilton, K., Smith, C.W., Vasquez, B.J., Leamon, R.J.: 2008, Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J. Geophys. Res. 113, A01106. doi: 10.1029/2007JA012559 .

    Article  ADS  Google Scholar 

  • Harmon, J.K.: 1989, Compressibility and cyclotron damping in the oblique Alfven waves. J. Geophys. Res. 94, 15399 – 15405. doi: 10.1029/JA094iA11p15399 .

    Article  ADS  Google Scholar 

  • Harvey, C.C., Celnikier, L., Hubert, D.: 1988, Results from the ISEE propagation density experiment. Adv. Space Res. 8, 185 – 196. doi: 10.1016/0273-1177(88)90131-7 .

    Article  ADS  Google Scholar 

  • He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: 2011, Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys. J. 731, 85. doi: 10.1088/0004-637X/731/2/85 .

    Article  ADS  Google Scholar 

  • He, J., Tu, C., Marsch, E., Yao, S.: 2012a, Reproduction of the observed two-component magnetic helicity in solar wind turbulence by a superposition of parallel and oblique Alfvén waves. Astrophys. J. 749, 86. doi: 10.1088/0004-637X/749/1/86 .

    Article  ADS  Google Scholar 

  • He, J., Tu, C., Marsch, E., Yao, S.: 2012b, Do oblique Alfvén/ion-cyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length? Astrophys. J. Lett. 745, L8. doi: 10.1088/2041-8205/745/1/L8 .

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: 1999, Kinetic Alfvén wave revisited. J. Geophys. Res. 104, 14811 – 14820. doi: 10.1029/1998JA900132 .

    Article  ADS  Google Scholar 

  • Hollweg, J.V., Isenberg, P.A.: 2002, Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147. doi: 10.1029/2001JA000270 .

    Article  Google Scholar 

  • Horbury, T.S., Forman, M., Oughton, S.: 2008, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101, 175005. doi: 10.1103/PhysRevLett.101.175005 .

    Article  ADS  Google Scholar 

  • Howes, G.G., Quataert, E.: 2010, On the interpretation of magnetic helicity signatures in the dissipation range of solar wind turbulence. Astrophys. J. Lett. 709, L49 – L52. doi: 10.1088/2041-8205/709/1/L49 .

    Article  ADS  Google Scholar 

  • Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A.: 2006, Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590 – 614. doi: 10.1086/506172 .

    Article  ADS  Google Scholar 

  • Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A.: 2008a, A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103. doi: 10.1029/2007JA012665 .

    Article  ADS  Google Scholar 

  • Howes, G.G., Dorland, W., Cowley, S.C., Hammett, G.W., Quataert, E., Schekochihin, A.A., Tatsuno, T.: 2008b, Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100, 065004. doi: 10.1103/PhysRevLett.100.065004 .

    Article  ADS  Google Scholar 

  • Howes, G.G., Tenbarge, J.M., Dorland, W., Quataert, E., Schekochihin, A.A., Numata, R., Tatsuno, T.: 2011, Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004. doi: 10.1103/PhysRevLett.107.035004 .

    Article  ADS  Google Scholar 

  • Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., TenBarge, J.M.: 2012, The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. Lett. 753, L19. doi: 10.1088/2041-8205/753/1/L19 .

    Article  ADS  Google Scholar 

  • Isenberg, P.A.: 2001, Heating of coronal holes and generation of the solar wind by ion-cyclotron resonance. Space Sci. Rev. 95, 119 – 131. doi: 10.1023/A:1005287225222 .

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Strangeway, R.J., Leisner, J.S., Galvin, A.B.: 2009, Ion cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys. J. Lett. 701, L105 – L109. doi: 10.1088/0004-637X/701/2/L105 .

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Anderson, B.J., Boardsen, S.A., Strangeway, R.J., Cowee, M.M., Wennmacher, A.: 2010, Observations of ion cyclotron waves in the solar wind near 0.3 AU. J. Geophys. Res. 115, A12115. doi: 10.1029/2010JA015737 .

    Article  ADS  Google Scholar 

  • Johnson, J.R., Cheng, C.Z.: 2001, Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 4421 – 4424. doi: 10.1029/2001GL013509 .

    Article  ADS  Google Scholar 

  • Kellogg, P.J.: 2008, Measuring electric field and density turbulence in the solar wind. In: Li, G., Hu, Q., Verkhoglyadova, O., Zank, G.P., Lin, R.P., Luhmann, J. (eds.) Particle Acceleration and Transport in the Heliosphere and Beyond, AIP Conf. Proc. 1039, 87 – 92. doi: 10.1063/1.2982490 .

    Google Scholar 

  • Kellogg, P.J., Horbury, T.S.: 2005, Rapid density fluctuations in the solar wind. Ann. Geophys. 23, 3765 – 3773. doi: 10.5194/angeo-23-3765-2005 .

    Article  ADS  Google Scholar 

  • Kellogg, P.J., Bale, S.D., Mozer, F.S., Horbury, T.S., Reme, H.: 2006, Solar wind electric fields in the ion cyclotron frequency range. Astrophys. J. 645, 704 – 710. doi: 10.1086/499265 .

    Article  ADS  Google Scholar 

  • Kiyani, K.H., Chapman, S.C., Khotyaintsev, Y.V., Dunlop, M.W., Sahraoui, F.: 2009, Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103, 075006. doi: 10.1103/PhysRevLett.103.075006 .

    Article  ADS  Google Scholar 

  • Klein, K.G., Howes, G.G., TenBarge, J.M., Bale, S.D., Chen, C.H.K., Salem, C.S.: 2012, Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159. doi: 10.1088/0004-637X/755/2/159 .

    Article  ADS  Google Scholar 

  • Laming, J.M.: 2005, Lower hybrid wave electron heating in the fast solar wind. Astrophys. Space Sci. 298, 385 – 388. doi: 10.1007/s10509-005-3977-2 .

    Article  ADS  MATH  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H., Wong, H.K.: 1998a, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 – 4787. doi: 10.1029/97JA03394 .

    Article  ADS  Google Scholar 

  • Leamon, R.J., Matthaeus, W.H., Smith, C.W., Wong, H.K.: 1998b, Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence. Astrophys. J. Lett. 507, L181 – L184. doi: 10.1086/311698 .

    Article  ADS  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., Wong, H.K.: 1999a, Dissipation range dynamics: kinetic Alfvén waves and the importance of beta-e. J. Geophys. Res. 104, 22331 – 22344. doi: 10.1029/1999JA900158 .

    Article  ADS  Google Scholar 

  • Leamon, R.J., Matthaeus, W.H., Smith, C.W., Wong, H.K.: 1999b, Considerations limiting cyclotron-resonant damping of cascading interplanetary turbulence and why the ‘slab’ approximation fails. In: Habbal, S.R., Esser, R., Hollweg, J.V., Isenberg, P.A. (eds.) Solar Wind Nine, AIP Conf. Proc. 471, 465 – 468. doi: 10.1063/1.58674 .

    Google Scholar 

  • Lengyel-Frey, D., Hess, R.A., MacDowall, R.J., Stone, R.G., Lin, N., Balogh, A., Forsyth, R.: 1996, Ulysses observations of whistler waves at interplanetary shocks and in the solar wind. J. Geophys. Res. 101, 27555 – 27564. doi: 10.1029/96JA00548 .

    Article  ADS  Google Scholar 

  • Leubner, M.P., Viñas, A.F.: 1986, Stability analysis of double-peaked proton distribution functions in the solar wind. J. Geophys. Res. 91, 13366 – 13372. doi: 10.1029/JA091iA12p13366 .

    Article  ADS  Google Scholar 

  • Li, H., Gary, S.P., Stawicki, O.: 2001, On the dissipation of magnetic fluctuations in the solar wind. Geophys. Res. Lett. 28, 1347 – 1350. doi: 10.1029/2000GL012501 .

    Article  ADS  Google Scholar 

  • Lin, N., Kellogg, P.J., MacDowall, R.J., Scime, E.E., Balogh, A., Forsyth, R.J., McComas, D.J., Phillips, J.L.: 1998, Very low frequency waves in the heliosphere: ulysses observations. J. Geophys. Res. 103, 12023 – 12036. doi: 10.1029/98JA00764 .

    Article  ADS  Google Scholar 

  • Lin, N., Kellogg, P.J., MacDowall, R.J., McComas, D.J., Balogh, A.: 2003, VLF wave activity in the solar wind and the photoelectron effect in electric field measurements: Ulysses observations. Geophys. Res. Lett. 30, 8029. doi: 10.1029/2003GL017244 .

    Article  ADS  Google Scholar 

  • Luo, Q.Y., Wu, D.J.: 2010, Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. Lett. 714, L138 – L141. doi: 10.1088/2041-8205/714/1/L138 .

    Article  ADS  Google Scholar 

  • Maron, J., Goldreich, P.: 2001, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175 – 1196. doi: 10.1086/321413 .

    Article  ADS  Google Scholar 

  • Marsch, E.: 1999, Cyclotron heating of the solar corona. Astrophys. Space Sci. 264, 63 – 76. doi: 10.1023/A:1002436407996 .

    Article  ADS  MATH  Google Scholar 

  • Marsch, E., Chang, T.: 1983, Electromagnetic lower hybrid waves in the solar wind. J. Geophys. Res. 88, 6869 – 6880. doi: 10.1029/JA088iA09p06869 .

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Ghosh, S., Oughton, S., Roberts, D.A.: 1996, Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101, 7619 – 7630. doi: 10.1029/95JA03830 .

    Article  ADS  Google Scholar 

  • Narita, Y.: 2012, Plasma Turbulence in the Solar System, Springer, Heidelberg. doi: 10.1007/978-3-642-25667-7 .

    Book  Google Scholar 

  • Narita, Y., Gary, S.P., Saito, S., Glassmeier, K.-H., Motschmann, U.: 2011, Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, L05101. doi: 10.1029/2010GL046588 .

    Article  ADS  Google Scholar 

  • Neubauer, F.M., Musmann, G., Dehmel, G.: 1977, Fast magnetic fluctuations in the solar wind – HELIOS I. J. Geophys. Res. 82, 3201 – 3212. doi: 10.1029/JA082i022p03201 .

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 1975, The enhancement of solar wind fluctuations at the proton thermal gyroradius. J. Geophys. Res. 80, 998 – 1002. doi: 10.1029/JA080i007p00998 .

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 1976, Corrections to and comments on the paper ‘The enhancement of solar wind fluctuations at the proton thermal gyroradius’. J. Geophys. Res. 81, 2447 – 2448. doi: 10.1029/JA081i013p02447 .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Wu, C.S., Huba, J.D.: 1978, Plasma fluctuations in the solar wind. J. Geophys. Res. 83, 1027 – 1034. doi: 10.1029/JA083iA03p01027 .

    Article  ADS  Google Scholar 

  • Oughton, S., Priest, E.R., Matthaeus, W.H.: 1994, The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 280, 95 – 117. doi: 10.1017/S0022112094002867 .

    Article  ADS  MATH  Google Scholar 

  • Percival, D.B., Walden, A.T.: 1993, Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Podesta, J.J.: 2009, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986 – 999. doi: 10.1088/0004-637X/698/2/986 .

    Article  ADS  Google Scholar 

  • Podesta, J.J.: 2010, Spectral anisotropy of solar wind turbulence in the inertial range and dissipation range. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 128 – 131. doi: 10.1063/1.3395817 .

    Google Scholar 

  • Podesta, J.J.: 2011, Solar wind turbulence: advances in observations and theory. In: Bonanno, A., de Gouveia Dal Pino, E., Kosovichev, A.G. (eds.), Advances in Plasma Astrophysics, IAU Symp. 274, 295 – 301. doi: 10.1017/S1743921311007162 .

    Google Scholar 

  • Podesta, J.J.: 2012a, Observations of electromagnetic fluctuations at ion kinetic scales in the solar wind. In: Leubner, M.P., Vörös, Z. (eds.) Multi-scale Dynamical Processes in Space and Astrophysical Plasmas, Springer, Berlin, 177 – 186. doi: 10.1007/978-3-642-30442-2_20 .

    Chapter  Google Scholar 

  • Podesta, J.J.: 2012b, The need to consider ion Bernstein waves as a dissipation channel of solar wind turbulence. J. Geophys. Res. 117, 7101. doi: 10.1029/2012JA017770 .

    Article  Google Scholar 

  • Podesta, J.J.: 2013, Spectral scaling laws of solar wind fluctuations at 1 AU. In: Zank, G. (ed.) Thirteenth International Solar Wind Conference, AIP Conf. Proc., in press.

  • Podesta, J.J., Gary, S.P.: 2011a, Effect of differential flow of alpha particles on proton pressure anisotropy instabilities in the solar wind. Astrophys. J. 742, 41. doi: 10.1088/0004-637X/742/1/41 .

    Article  ADS  Google Scholar 

  • Podesta, J.J., Gary, S.P.: 2011b, Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys. J. 734, 15. doi: 10.1088/0004-637X/734/1/15 .

    Article  ADS  Google Scholar 

  • Podesta, J.J., TenBarge, J.M.: 2012, Scale dependence of the variance anisotropy near the proton gyroradius scale: additional evidence for kinetic Alfvén waves in the solar wind at 1 AU. J. Geophys. Res. 117, A10106. doi: 10.1029/2012JA017724 .

    Article  ADS  Google Scholar 

  • Quataert, E.: 1998, Particle heating by Alfvenic turbulence in hot accretion flows. Astrophys. J. 500, 978 – 991. doi: 10.1086/305770 .

    Article  ADS  Google Scholar 

  • Quataert, E., Gruzinov, A.: 1999, Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248 – 255. doi: 10.1086/307423 .

    Article  ADS  Google Scholar 

  • Rosenberg, S., Gekelman, W.: 2001, A three-dimensional experimental study of lower hybrid wave interactions with field-aligned density depletions. J. Geophys. Res. 106, 28867 – 28884. doi: 10.1029/2000JA000061 .

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L.: 2011, Electron scale solar wind turbulence: cluster observations and theoretical modeling. In: Vassiliadis, D., Fung, S.F., Shao, X., Daglis, I.A., Huba, J.D. (eds.) Modern Challenges in Nonlinear Plasma Physics: a Festschrift Honoring the Career of Dennis Papadopoulos, AIP Conf. Proc. 1320, 160 – 165. doi: 10.1063/1.3544320 .

    Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Y.V.: 2009, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102. doi: 10.1103/PhysRevLett.102.231102 .

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: 2010, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101. doi: 10.1103/PhysRevLett.105.131101 .

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Abdul-Kader, K., Belmont, G., Rezeau, L., Robert, P., Canu, P.: 2011, Observation and theoretical modeling of electron scale solar wind turbulence. C. R. Phys. 12, 132 – 140. doi: 10.1016/j.crhy.2010.11.008 .

    Article  ADS  Google Scholar 

  • Salem, C.S., Howes, G.G., Sundkvist, D., Bale, S.D., Chaston, C.C., Chen, C.H.K., Mozer, F.S.: 2012, Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, L9. doi: 10.1088/2041-8205/745/1/L9 .

    Article  ADS  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Dorland, W.: 2007, Interplanetary and interstellar plasma turbulence. Plasma Phys. Control. Fusion 49, A195 – A209. doi: 10.1088/0741-3335/49/5A/S16 .

    Article  ADS  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Plunk, G.G., Quataert, E., Tatsuno, T.: 2008, Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys. Control. Fusion 50, 124024. doi: 10.1088/0741-3335/50/12/124024 .

    Article  ADS  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., Tatsuno, T.: 2009, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310 – 377. doi: 10.1088/0067-0049/182/1/310 .

    Article  ADS  Google Scholar 

  • Schwartz, S.J., Burgess, D., Moses, J.J.: 1996, Low-frequency waves in the Earth’s magnetosheath: present status. Ann. Geophys. 14, 1134 – 1150. doi: 10.1007/s00585-996-1134-z .

    ADS  Google Scholar 

  • Shebalin, J.V., Matthaeus, W.H., Montgomery, D.: 1983, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525 – 547. doi: 10.1017/S0022377800000933 .

    Article  ADS  Google Scholar 

  • Shukla, P.K., Bingham, R., McKenzie, J.F., Axford, W.I.: 1999, Solar coronal heating by high-frequency dispersive Alfvén waves. Solar Phys. 186, 61 – 66. doi: 10.1023/A:1005133420666 .

    Article  ADS  Google Scholar 

  • Smith, C.W., Vasquez, B.J., Hamilton, K.: 2006, Interplanetary magnetic fluctuation anisotropy in the inertial range. J. Geophys. Res. 111, A09111. doi: 10.1029/2006JA011651 .

    Article  ADS  Google Scholar 

  • Smith, K.W., Terry, P.W.: 2011, Damping of electron density structures and implications for interstellar scintillation. Astrophys. J. 730, 133. doi: 10.1088/0004-637X/730/2/133 .

    Article  ADS  Google Scholar 

  • Stawicki, O., Gary, S.P., Li, H.: 2001, Solar wind magnetic fluctuation spectra: dispersion versus damping. J. Geophys. Res. 106, 8273 – 8282. doi: 10.1029/2000JA000446 .

    Article  ADS  Google Scholar 

  • TenBarge, J.M., Podesta, J.J., Klein, K.G., Howes, G.G.: 2012, Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753, 107. doi: 10.1088/0004-637X/753/2/107 .

    Article  ADS  Google Scholar 

  • Terry, P.W., Smith, K.W.: 2007, Coherence and intermittency of electron density in small-scale interstellar turbulence. Astrophys. J. 665, 402 – 415. doi: 10.1086/519016 .

    Article  ADS  Google Scholar 

  • Terry, P.W., Smith, K.W.: 2008, Intermittency of electron density in interstellar kinetic Alfvén wave turbulence. Phys. Plasmas 15, 056502. doi: 10.1063/1.2856213 .

    Article  ADS  Google Scholar 

  • Terry, P.W., McKay, C., Fernandez, E.: 2001, The role of electron density in magnetic turbulence. Phys. Plasmas 8, 2707 – 2721. doi: 10.1063/1.1362531 .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Arballo, J.K., Mok, J., Smith, E.J., Mason, G.M., Tan, L.C.: 1994, Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations. Geophys. Res. Lett. 21, 633 – 636. doi: 10.1029/94GL00566 .

    Article  ADS  Google Scholar 

  • Verdon, A.L., Cairns, I.H., Melrose, D.B., Robinson, P.A.: 2009a, Properties of lower hybrid waves. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, 569 – 573. doi: 10.1017/S1743921309029871 .

    Google Scholar 

  • Verdon, A.L., Cairns, I.H., Melrose, D.B., Robinson, P.A.: 2009b, Warm electromagnetic lower hybrid wave dispersion relation. Phys. Plasmas 16, 052105. doi: 10.1063/1.3132628 .

    Article  ADS  Google Scholar 

  • Verscharen, D., Marsch, E., Motschmann, U., Müller, J.: 2012, Kinetic cascade beyond magnetohydrodynamics of solar wind turbulence in two-dimensional hybrid simulations. Phys. Plasmas 19, 022305. doi: 10.1063/1.3682960 .

    Article  ADS  Google Scholar 

  • Voitenko, Y., Goossens, M.: 2004, Cross-field heating of coronal ions by low-frequency kinetic Alfvén waves. Astrophys. J. Lett. 605, L149 – L152. doi: 10.1086/420927 .

    Article  ADS  Google Scholar 

  • White, R., Chen, L., Lin, Z.: 2002, Resonant plasma heating below the cyclotron frequency. Phys. Plasmas 9, 1890 – 1897. doi: 10.1063/1.1445180 .

    Article  ADS  Google Scholar 

  • Wicks, R.T., Horbury, T.S., Chen, C.H.K., Schekochihin, A.A.: 2010, Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. Roy. Astron. Soc. 407, L31 – L35. doi: 10.1111/j.1745-3933.2010.00898.x .

    Article  ADS  Google Scholar 

  • Yoon, P.H., Fang, T.: 2008, Parallel cascade of Alfvén waves. Plasma Phys. Control. Fusion 50, 085007. doi: 10.1088/0741-3335/50/8/085007 .

    Article  ADS  Google Scholar 

  • Yoon, P.H., Fang, T.: 2009, Proton heating by parallel Alfvén wave cascade. Phys. Plasmas 16, 062314. doi: 10.1063/1.3159605 .

    Article  ADS  Google Scholar 

  • Zhang, Y., Matsumoto, H., Kojima, H.: 1998, Bursts of whistler mode waves in the upstream of the bow shock: geotail observations. J. Geophys. Res. 103, 20529 – 20540. doi: 10.1029/98JA01371 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The contents of this paper are based on an invited talk presented at the Solar Wind Thirteen conference held on the Big Island of Hawaii in June of 2012. This review, which covers many details not included in the talk, was motivated a few months after the meeting by personal comments from an esteemed solar wind scientist and plasma physicist whose incredulous view on the existence of KAWs in the solar wind is confuted by experimental data. I am grateful to several of my colleagues who provided valuable feedback that significantly improved this paper. This research was supported by the NASA Solar and Heliospheric Physics Program and by the NSF Shine Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Podesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podesta, J.J. Evidence of Kinetic Alfvén Waves in the Solar Wind at 1 AU. Sol Phys 286, 529–548 (2013). https://doi.org/10.1007/s11207-013-0258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0258-z

Keywords

Navigation