Skip to main content

Functional Evaluation Model for Lactic Acid Bacteria

  • Chapter
  • First Online:
Lactic Acid Bacteria
  • 1176 Accesses

Abstract

With the deepening exploration of the relation between the gut microbiota and the host health, the health-promoting effect of lactic acid bacteria has been further analyzed and explored. Numerous studies have shown that in addition to the widely recognized functions like antagonizing pathogenic bacteria, regulating gut microbiota, and improving immunity, lactic acid bacteria may also have a series of special physiological functions such as antioxidant, anti-mutation, biological elimination of toxic and harmful substances, and reduction of cardiovascular diseases. At present, many studies have attempted to develop a mature, accurate, and high-throughput functional evaluation model for the characteristics mentioned above to efficiently screen the strains, obtain probiotic strains with excellent physiological characteristics, and then verify and evaluate its function by in vitro models, cell models, as well as in vivo models. The establishment of these functional evaluation models is beneficial to figure out the health-promoting benefits of lactic acid bacteria and provides a good reference for the strain screening and physiological evaluation of follow-up researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson TR (2015) Not all probiotic strains prevent necrotising enterocolitis in premature infants [J]. Lancet 387(10019):624–625

    Article  PubMed  Google Scholar 

  • Achuthan AA, Duary RK, Madathil A et al (2012) Antioxidative potential of lactobacilli isolated from the gut of Indian people [J]. Mol Biol Rep 39(8):7887–7897

    Article  CAS  PubMed  Google Scholar 

  • Ambalam P, Dave JM, Nair BM et al (2011) In vitro mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231 [J]. Anaerobe 17(5):217–222

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-LóPez FN, Blanquet-Diot S, Denis S et al (2014) Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion [J]. Front Microbiol 5(Art 540):540

    PubMed  PubMed Central  Google Scholar 

  • Balcázar JL, Vendrell D, De BI et al (2007) In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens [J]. Vet Microbiol 122(3):373–380

    Article  PubMed  Google Scholar 

  • Banjoko IO, Adeyanju MM, Ademuyiwa O et al (2012) Hypolipidemic effects of lactic acid bacteria fermented cereal in rats [J]. Lipids Health Dis 11(1):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakta JN, Ohnishi K, Munekage Y et al (2012) Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents [J]. J Appl Microbiol 112(6):1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Bo-lin H, Jian-he H, Li-yan L et al (2008) Effects of Lactobacillus plantarum and Streptococcus faecalis on immune function of broilers [J]. Guangdong Agric Sci 11:80–83

    Google Scholar 

  • Borob’Eva LI, Cherdyntseva TA, Abilev SK (1995) Antimutagenic action of bacteria on mutagenesis induced by 4-nitroquinoline-1-oxide in Salmonella typhimurium [J]. Mikrobiologiia 64(2):228

    PubMed  Google Scholar 

  • Borruel N, Carol M, Casellas F et al (2002) Increased mucosal tumour necrosis factor α production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria [J]. Gut 51(5):659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner DA, Boyle WJ (1996) Molecular and cellular biology of the small intestine [J]. Curr Opin Gastroenterol 12(2):115–121

    Article  Google Scholar 

  • Buffington S, Diprisco GV, Auchtung T et al (2016) Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring [J]. Cell 165(7):1762–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagno RD, Surico RF, Paradiso A et al (2009) Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices [J]. Int J Food Microbiol 128(3):473–483

    Article  PubMed  Google Scholar 

  • Caldini G, Trotta F, Villarini M et al (2005) Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests [J]. Int J Food Microbiol 102(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Cenci G, Rossi J, Trotta F et al (2002) Lactic acid bacteria isolated from dairy products inhibit genotoxic effect of 4-nitroquinoline-1-oxide in SOS-chromotest [J]. Syst Appl Microbiol 25(4):483–490

    Article  CAS  PubMed  Google Scholar 

  • Cha YS, Seo JG, Chung MJ et al (2014) A mixed formulation of lactic acid bacteria inhibits trinitrobenzene-sulfonic-acid-induced inflammatory changes of the colon tissue in mice [J]. J Microbiol Biotechnol 24(10):1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (2002) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract [J]. J Appl Microbiol 84(5):759–768

    Article  Google Scholar 

  • Chen CY, Tsen HY, Lin CL, Lin CK, Chuang LT, Chen CS, Chiang YC (2013) Enhancement of the immune response against Salmonella infection of mice by heat-killed multispecies combinations of lactic acid bacteria [J]. J Med Microbiol 62(11):1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Kong Q, Chi C et al (2015) Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus [J]. Int J Food Microbiol 211:1–5

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Yeshi Y, Xiaona W et al (2012) Effects of Lactobacillus plantarum on piglets growth performance and pork quality [J]. J Chin Inst Food Sci Technol 12(7):155–161

    Google Scholar 

  • Chunyang Z, Zhongxiang N, Weishan C et al (2002) The promoting effects of probiotics to the nutrition and immunity of broilers [J]. Chin J Prev Vet Med 24(1):51–54

    Google Scholar 

  • Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells [J]. J Dairy Sci 70(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Cross ML, Mortensen RR, Kudsk J et al (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen-primed mice [J]. Med Microbiol Immunol 191(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Dan-dan Z, Yu-xing G, Hui-min Z et al (2014) Study on probiotic properties of Lactobacillus helveticus [J]. Food Fermen Ind 40(5):32–36

    Google Scholar 

  • Dayan D, Hirshberg A, Kaplan I et al (1997) Experimental tongue cancer in desalivated rats [J]. Oral Oncol 33(2):105

    Article  CAS  PubMed  Google Scholar 

  • Dayong R (2013) Research on adhesion and immunoregulation of probiotic Lactobacillus strains [D]. Jilin University, Changchun

    Google Scholar 

  • Delia P, Sansotta G, Donato V et al (2007) Use of probiotics for prevention of radiation-induced diarrhea [J]. World J Gastroenterol 13(6):912–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di CR, Surico RF, Minervini G et al (2011) Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria [J]. Food Microbiol 28(5):900–909

    Article  Google Scholar 

  • Di-gang Z, Ai-ying L (2011) Effect of Lactobacillus supplementation on growth and disease resistance in tilapia [J]. J South Agric 42(3):328–331

    Google Scholar 

  • Dilna SV, Surya H, Aswathy RG et al (2015) Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF 4 [J]. LWT Food Sci Technol 64(2):1179–1186

    Article  CAS  Google Scholar 

  • Dong Z, Hai-jun W, Shi-ping C et al (2007) Comparison of the five models on experimental hyperlipidemia rats [J]. Chin Pharmacol Bull 23(9):1254–1256

    Google Scholar 

  • Dongyan Z, Haifeng J, Jing W et al (2011) Effect of dietary Lactobacillus reuteri from swine on growth performance and serum indices of weaned piglets [J]. Chin J Anim Nutr 23(9):1553–1559

    Google Scholar 

  • Duan ZP, Liu Q, Jin XY (2002) The protective effects of lactic acid bacterial mixture on alcohol-induced stomach mucosa and liver injury [J]. Chin J Clin Hepatol

    Google Scholar 

  • Du JH, Tian CS, Bian YL (2003) A model of hepatic injury induced by alcohol in rats. J Zhangjiakou Med Coll 20(5):8–10

    Google Scholar 

  • El-Nezami H, Kankaanpaa P, Salminen S et al (1998) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1 [J]. Food Chem Toxicol 36(4):321–326

    Article  CAS  PubMed  Google Scholar 

  • El-Nezami H, Mykkänen H, Kankaanpää P et al (2000) Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B, from the chicken duodenum [J]. J Food Prot 63(4):549

    Article  CAS  PubMed  Google Scholar 

  • El-Nezami HS, Chrevatidis A, Auriola S et al (2002a) Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium [J]. Food Addit Contam 19(7):680–686

    Article  CAS  PubMed  Google Scholar 

  • El-Nezami H, Polychronaki N, Salminen S et al (2002b) Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative ά-zearalenol [J]. Appl Environ Microbiol 68(7):3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estienne M (2005) Effects of antibiotics and probiotics on suckling pig and weaned pig performance [J]. Int J Appl Res Vet Med 4:303–308

    Google Scholar 

  • Fang W, Ai-ping L, Fa-zheng R et al (2007) Lactic acid bacteria isolated from elderly people inhibit genotoxic effect of 4-nitroquinoline-1-oxide in SOS-chromotest [J]. Food Sci 28(10):425–429

    Google Scholar 

  • Faye J, Yilong W, Xiyong Y et al (2011) Organization and quality control of drug clinical trial institutions for clinical trials [J]. Her Med 30(3):400–402

    Google Scholar 

  • Feng T, Jian-fa W, Xiu-ping L et al (2013) Effects of dietary Lactobacillus acidophilus microflora, and the isolated from chicken on growth performance, intestinal absorptive function of chickens [J]. Chin J Anim Sci 49(15):73–77

    Google Scholar 

  • Fuchs S, Sontag G, Stidl R et al (2008) Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria [J]. Food Chem Toxicol 46(4):1398–1407

    Article  CAS  PubMed  Google Scholar 

  • Fuqiang W, Yuming G, Ying C et al (2005) Colonization of two lactobacillus strains in gastro-intestine of flounder [J]. J China Agric Univ 10(01):6–10

    Google Scholar 

  • Gang W, Feng-wei T, Xiao-ming L et al (2013) Screening and identification of two lactic acid bacteria strains with excellent antioxidant activities in vitro [J]. Sci Technol Food Ind 34(15):149–153

    Google Scholar 

  • Ghoneum M, Gimzewski J (2014) Apoptotic effect of a novel kefir product, PFT, on multidrug-resistant myeloid leukemia cells via a hole-piercing mechanism [J]. Int J Oncol 44(3):830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gildberg A, Mikkelsen H, Sandaker E et al (1997) Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua) [M]. Springer, Dordrecht

    Book  Google Scholar 

  • Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli [J]. Int J Food Microbiol 67(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Grompone G, Martorell P, Llopis S et al (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans [J]. PLoS One 7(12):e52493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haifeng Z, Bin L, Chunyuan Y et al (2012) Specifications and recommendations for human food trial trials of health foods [J]. Cap Med 10(24):8–9

    Google Scholar 

  • Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria [J]. Int J Food Microbiol 114(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Halttunen T, Collado MC, El-Nezami H et al (2010) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution [J]. Lett Appl Microbiol 46(2):160–165

    Article  Google Scholar 

  • Hatab S, Yue T, Mohamad O (2012) Reduction of patulin in aqueous solution by lactic acid bacteria [J]. J Food Sci 77(4):M238–M241

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BL, Heniford BW, Ackermann DM et al (2010) 4NQO carcinogenesis: a mouse model of oral cavity squamous cell carcinoma [J]. Head Neck 16(5):424–432

    Article  Google Scholar 

  • Hernández-Ledesma B, Amigo L, Mercedes Ramos A et al (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion [J]. J Agric Food Chem 52(6):1504–1510

    Article  PubMed  Google Scholar 

  • Hernández-Ledesma B, Miguel M, Amigo L et al (2007) Effect of simulated gastrointestinal digestion on the antihypertensive properties of synthetic beta-lactoglobulin peptide sequences [J]. J Dairy Res 74(3):336–339

    Article  PubMed  Google Scholar 

  • Hoang BX, Shaw GP, Levine SA (2010) Lactobacillus rhamnosus cell lysate in the management of resistant childhood atopic eczema [J]. Inflamm Allergy Drug Targets 9(3):192–196

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Guangyu G, Zhengjun W et al (2010) Auxiliary effects of Lactobacillus plantarum ST-III strain on blood lipids regulation [J]. Pharm Care Res 10(2):128–130

    Google Scholar 

  • Hosono A (1986) Desmutagenic effect of cultured milk on chemically induced mutagenesis in Escherichia coli B/r WP2 trphcr [J]. Milchwissenchaft 41:142–145

    CAS  Google Scholar 

  • Hugo AA, Antoni GLD, Pérez PF (2006) Lactobacillus delbrueckii subsp lactis strain CIDCA 133 inhibits nitrate reductase activity of Escherichia coli [J]. Int J Food Microbiol 111(3):191–196

    Article  CAS  PubMed  Google Scholar 

  • Huseini HF, Rahimzadeh G, Fazeli MR, Mehrazma M, Salehi M (2012) Evaluation of wound healing activities of kefir products [J]. Burns 38(5):719–723

    Article  PubMed  Google Scholar 

  • Ibrahim F, Halttunen T, Tahvonen R et al (2006) Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms [J]. Can J Microbiol 52(9):877

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Yasui C, Hoshino K et al (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis [J]. Appl Environ Microbiol 73(20):6404–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indrio F, Mauro AD, Riezzo G et al (2014) Prophylactic use of a probiotic in the prevention of colic, regurgitation, and functional constipation: a randomized clinical trial [J]. JAMA Pediatr 168(3):228–233

    Article  PubMed  Google Scholar 

  • Inoue R, Tsukahara T, Nakanishi N et al (2005) Development of the intestinal microbiota in the piglet [J]. J Gen Appl Microbiol 51(4):257–265

    Article  CAS  PubMed  Google Scholar 

  • Isabelle M, Gagné JP, Gallouzi IE et al (2012) Quantitative proteomics and dynamic imaging reveal that G3BP-mediated stress granule assembly is poly(ADP-ribose)-dependent following exposure to MNNG-induced DNA alkylation [J]. J Cell Sci 125(Pt 19):4555

    CAS  PubMed  Google Scholar 

  • Jiang Y, Qu B, Man C et al (2016) Induction of cytokines via NF-ΰB and p38 MAP kinase signalling pathways associated with the immunomodulation by Lactobacillus plantarum NDC 75017 in vitro and in vivo [J]. J Funct Foods 20:215–225

    Article  CAS  Google Scholar 

  • Jiang-wei Z, Yu-sheng C (2005) Antioxidative activities of lactic acid bacteria [J]. China Dairy Ind 33(1):35–38

    Google Scholar 

  • Jiang-wei Z, Yu-shen C, Hai-xing L et al (2005) Antioxidative activities of lactic acid bacteria and the test method [J]. China Dairy Ind 33(9):56–59

    Google Scholar 

  • Jian-long Z, Jie-lin W, Ping H et al (2015) Effect factors of one strain of lactic acid bacteria on DPPH radical scavenging [J]. Food Sci Technol 8:21–25

    Google Scholar 

  • Jin LZ, Ho YW, Abdullah N et al (1998) Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures [J]. Poult Sci 77(9):1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Jing L, Yin-nian Y, Hai-yang X (2000) Activation of JNK/SAPK pathway in vero cells induced by N-methyl-N’-nitro-N-nitrosoguanidine [J]. Chin J Pathophysiol 16(6):481–485

    Google Scholar 

  • Jing C, Naizhi L, Shifa C et al (2012) Effects of Lactobacillus plantarum on performance, immune property and intestinal enzyme activity of broilers [J]. J Qingdao Agric Univ Nat Sci 29(2):106–110

    Google Scholar 

  • Jing W, Chun-ping S, Xian-chao W et al (2013) The regulated effect of Lactobacillus and Bifidobacterium preparation of mice intestinal flora Disequilibrium model [J]. Sci Technol Eng 13(16):4497–4500

    Google Scholar 

  • Jinggang L, Hong H (1998) Inhibitory effect of Bifidobacterium bifidum and its surface molecules on the SOS reaction induced by MNNG [J]. Carcinog Teratog Mutagen (1):22–27

    Google Scholar 

  • Jinggang L, Hong H, Gefei K (1998) Inhibitory effect of Bifidobacterium bifidum and its surface molecules on DNA damage in murine colon mucosa by MNNG [J]. Carcinog Terato Mutagen 10(1):18–22

    Google Scholar 

  • Jingqiu Y (2009) Screening of anti-oxidative lactic acid bacteria and its protecting effect to oxidative damaged CT-26 cells [D]. Jiangnan University, Wuxi

    Google Scholar 

  • Jun-xia Y, Ying C, Li-li M (2007) The influences of probiotics on intestinal micro flora in Crucian carp (Carassius auratus) [J]. Fish Sci 26(11):610–612

    Google Scholar 

  • Kai T, Naaber P, Kullisaar T et al (2004) The influence of antibacterial and antioxidative probiotic lactobacilli on gut mucosa in a mouse model of Salmonella infection [J]. Microb Ecol Health Dis 16(4):180–187

    Google Scholar 

  • Kalavathy R, Abdullah N, Jalaludin S et al (2003) Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens [J]. Br Poult Sci 44(1):139–144

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Kuda T, An C et al (2012) Radical scavenging capacities of saba-narezushi, Japanese fermented chub mackerel, and its lactic acid bacteria [J]. LWT Food Sci Technol 47(1):25–30

    Article  CAS  Google Scholar 

  • Keliang L, Hua Z, Jun G et al (2015) Discussion on experiments of alcoholic liver injury in SD rats [J]. J Prev Med Inf 31(11):918–921

    Google Scholar 

  • Kim Y, Mylonakis E (2012) Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses [J]. Infect Immun 80(7):2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim NH, Hyung-Min KPD, An HJ et al (2010) Lipid profile lowering effect of SoyproTM fermented with lactic acid bacteria isolated from kimchi in high-fat diet-induced obese rats [J]. Biofactors 33(1):49–60

    Article  Google Scholar 

  • Klatt NR, Canary LA, Sun X et al (2013) Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques [J]. J Clin Investig 123(2):903–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kullisaar T, Zilmer M, Mikelsaar M et al (2002) Two antioxidative lactobacilli strains as promising probiotics [J]. Int J Food Microbiol 72(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Lähteinen T, Lindholm A, Rinttilä T et al (2014) Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets [J]. Vet Immunol Immunopathol 158(1–2):14–25

    Article  PubMed  Google Scholar 

  • Lan PT, Binh le T, Benno Y (2003) Impact of two probiotic Lactobacillus strains feeding on fecal lactobacilli and weight gains in chicken [J]. J Gen Appl Microbiol 49(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Hwang KT, Chung MY et al (2010) Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect [J]. J Food Sci 70(8):m388–m391

    Article  Google Scholar 

  • Li L, Lin C, Baodan Y et al (2011) Immunomodulatory effects of lactobacillus on splenocytes of dust mite-sensitized murine model [J]. Immunol J 3:193–198

    Google Scholar 

  • Li L, Jiang YJ, Yang XY et al (2014) Immunoregulatory effects on Caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM [J]. Food Funct 5(12):3261–3268

    Article  CAS  PubMed  Google Scholar 

  • Li-dong G, Qian L, Liu-qing J et al (2014) Isolation and properties of Lactococcus lactis strain from kefir grains [J]. Mod Food Sci Technol 9:121–125

    Google Scholar 

  • Lifeng W (2014) Effect of probiotic Lactobacillus plantarum P-8 on gut microbiota, intestinal immunity and growth performance of broiler chickens [D]. Inner Mongolia Agricultural University, Hohhot

    Google Scholar 

  • Lijun D, Yunan Z (2012) Experimental animals and experimental animal models [J]

    Google Scholar 

  • Lin MY, Chang FJ (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356 [J]. Dig Dis Sci 45(8):1617

    Article  CAS  PubMed  Google Scholar 

  • Lin MY, Yen CL (1999a) Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum [J]. J Agric Food Chem 47(9):3661–3664

    Article  CAS  PubMed  Google Scholar 

  • Lin MY, Yen CL (1999b) Antioxidative ability of lactic acid bacteria [J]. J Agric Food Chem 47(4):1460–1466

    Article  CAS  PubMed  Google Scholar 

  • Lin MY, Yen CL (1999c) Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms [J]. J Dairy Sci 82(8):1629–1634

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Hong-ni P, Chui-bin K et al (2010) The evaluation of the stress resistance of several probiotics to simulated gastrointestinal circumstance in vitro [J]. Chin J Microecol 22(8):701–702

    Google Scholar 

  • Lingmei J (2000) Application of probiotics in piglets [J]. China Rurac Sci Technol 2:15

    Google Scholar 

  • Liu H, Ji HF, Zhang DY et al (2015) Effects of lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs [J]. Livest Sci 178(1):251–254

    Article  Google Scholar 

  • Mäkeläinen H, Forssten S, Olli K et al (2009) Probiotic lactobacilli in a semi-soft cheese survive in the simulated human gastrointestinal tract [J]. Int Dairy J 19(11):675–683

    Article  Google Scholar 

  • Manaer T, Lan Y, Yi Z et al (2015) Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin [J]. J Ethnopharmacol 169:269–274

    Article  CAS  PubMed  Google Scholar 

  • Manikandan P, Vinothini G, Priyadarsini RV et al (2011) Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG [J]. Investig New Drugs 29(1):110–117

    Article  CAS  Google Scholar 

  • Matar C, Nadathur SS, Bakalinsky AT et al (1997) Antimutagenic effects of milk fermented by Lactobacillus helveticus L89 and a protease-deficient derivative [J]. J Dairy Sci 80(9):1965

    Article  CAS  PubMed  Google Scholar 

  • Mathew AG, Sutton AL, Scheidt AB et al (1993) Effect of galactan on selected microbial populations and pH and volatile fatty acids in the ileum of the weanling pig [J]. J Anim Sci 71(6):1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Matsumura S, Ikeda N, Hamada S et al (2015) Repeated-dose liver and gastrointestinal tract micronucleus assays with CI solvent yellow 14 (Sudan I) using young adult rats [J]. Mutat Res Genet Toxicol Environ Mutagen 780-781:76–80

    Article  CAS  PubMed  Google Scholar 

  • Millette M, Cornut G, Dupont C et al (2008) Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci [J]. Appl Environ Microbiol 74(7):1997–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi Y, Tokunaga M, Taketomo N, Ushida K (2007) Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs [J]. J Nutr Sci Vitaminol 53(1):82

    Article  CAS  PubMed  Google Scholar 

  • Ortiz AM, Klase ZA, Dinapoli SR et al (2016) IL-21 and probiotic therapy improve TH17 frequencies, microbial translocation, and microbiome in ARV-treated, SIV-infected macaques [J]. Mucosal Immunol 9(2):458–467

    Article  CAS  PubMed  Google Scholar 

  • Pan D-d, Zhang D-z (2005) Screening of cholesterol reducing lactic acid bacteria and its activity in cholesterol reducing [J]. Food Sci 26(6):233–237

    CAS  Google Scholar 

  • Panigrahi A, Kiron V, Kobayashi T et al (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136 [J]. Vet Immunol Immunopathol 102(4):379–388

    Article  CAS  PubMed  Google Scholar 

  • Park HD, Rhee CH (2001) Antimutagenic activity of Lactobacillus plantarum KLAB21 isolated from kimchi Korean fermented vegetables [J]. Biotechnol Lett 23(19):1583–1589

    Article  CAS  Google Scholar 

  • Parvizi P, Read L, Abdulcareem MF et al (2009) Cytokine gene expression in splenic CD4+ and CD8+ T-cell subsets of chickens infected with Marek’s disease virus [J]. Viral Immunol 132(2):209–217

    CAS  Google Scholar 

  • Pascual M, Hugas M, Badiola JI et al (1999) Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens [J]. Appl Environ Microbiol 65(11):4981–4986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattani R, Palda VA, Hwang SW et al (2013) Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile infection among hospitalized patients: systematic review and meta-analysis [J]. Open Med 7(2):e56–e67

    PubMed  PubMed Central  Google Scholar 

  • Pei C (2014) Study on the antidiabetic effect of probiotics and its mechanisms [D]. Jiangnan University, Wuxi

    Google Scholar 

  • Pollmann M, Nordhoff M, Pospischil A et al (2005) Effects of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine [J]. Infect Immun 73(7):4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozzoni P, Riva A, Bellatorre AG et al (2012) Saccharomyces boulardii for the prevention of antibiotic-associated diarrhea in adult hospitalized patients: a single-center, randomized, double-blind, placebo-controlled trial [J]. Am J Gastroenterol 107(6):922–931

    Article  PubMed  Google Scholar 

  • Qian Z, Juan Z, Guocheng D et al (2012a) Isolation and influencing factors of lactic acid bacteria with microcystin-LR degradation ability [J]. Chin J Appl Environ Biol 18(5):745–751

    Article  Google Scholar 

  • Qian Z, Fengmei Z, Yuchun C et al (2012b) Effects of lactic acid bacteria on growth indexes and immune indexes of grass carp fingerlings [J]. Feed Anim Husb 12:45–47

    Google Scholar 

  • Qing L, Wang T (2008) Lactic acid bacteria prevent alcohol-induced steatohepatitis in rats by acting on the pathways of alcohol metabolism [J]. Clin Exp Med 8(4):187–191

    Article  PubMed  Google Scholar 

  • Qinghong H, Yunxia G, Guojiang W et al (2011) The tolerance in gastrointestinal tract environment and anti-diarrhea of strain JM-11 from chicken against pathogenic bacteria [J]. Chin Agric Sci Bull 27(7):338–342

    Google Scholar 

  • Qiuwen H (2012) Study on preventive and therapeutic effect of probiotic Lactobacillus casei Zhang on type 2 diabetes in rats [D]. Jiangnan University, Wuxi

    Google Scholar 

  • Qixiao Z (2015) Effects of lactic acid bacteria against cadmium toxicity and the involved protective mechanisms [D]. Jiangnan University, Wuxi

    Google Scholar 

  • Quanxi X, Jianmei Z, Wei G (2013) Effects of Lactobacillus plantarum on growth performance, immune function and antioxidant capacity of broilers [J]. China Feed 14:26–30

    Google Scholar 

  • Quillardet P, Hofnung M (1985) The SOS chromotest, a colorimetric bacterial assay for genotoxins: procedures [J]. Mutat Res 147(3):65–78

    Article  CAS  PubMed  Google Scholar 

  • Ringø E, Gatesoupe F-J (1998) Lactic acid bacteria in fish: a review [J]. Aquaculture 160(3–4):177–203

    Article  Google Scholar 

  • Rizzo A, Losacco A, Carratelli CR et al (2013) Lactobacillus plantarum reduces Streptococcus pyogenes virulence by modulating the IL-17, IL-23 and Toll-like receptor 2/4 expressions in human epithelial cells [J]. Int Immunopharmacol 17(2):453–461

    Article  CAS  PubMed  Google Scholar 

  • Ross GR, Gusils C, Oliszewski R et al (2010) Effects of probiotic administration in swine [J]. J Biosci Bioeng 109(6):545–549

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux C, Thuru X, Gelot A et al (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors [J]. Nat Med 13(1):35

    Article  CAS  PubMed  Google Scholar 

  • Ruixia G, Dongxin T, Jiuhuo G et al (1996) Effect of bile and LOW pH on the ability of lactic acid bacterium to survive [J]. Microbiology 23(3):144–146

    Google Scholar 

  • Scharek L, Guth J, Reiter K et al (2005) Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets [J]. Vet Immunol Immunopathol 105(1):151–161

    Article  CAS  PubMed  Google Scholar 

  • Serban DE (2014) Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics [J]. Cancer Lett 345(2):258–270

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Niño JC, Cavazos-Garduño A, Cantú-Cornelio F et al (2015) In vitro reduced availability of aflatoxin B 1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains [J]. LWT Food Sci Technol 64(2):1334–1341

    Article  Google Scholar 

  • Sheng-yu L, Da L, Yu-juan Z et al (2013) Protective effect of Lactobacillus plantarum C88 on H202-induced oxidative stress in Caco-2 cells [J]. Sci Agric Sin 46(3):606–613

    Google Scholar 

  • Shu-peng L, Xian-jun Z (2005) Influence of astragalus polysaccharide and profitable microbe on intestinal flora of chick [J]. Ecolo Domest Anim 26(3):21–25

    Google Scholar 

  • Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy [J]. Science 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HW (2010) Observations on the flora of the alimentary tract of animals and factors affecting its composition [J]. J Pathol 89(1):95–122

    Article  Google Scholar 

  • Son VM, Chang C-C, Wu M-C et al (2009) Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides [J]. Fish Shellfish Immunol 26(5):691–698

    Article  CAS  PubMed  Google Scholar 

  • Steed H, Macfarlane GT, Blackett KL et al (2010) Clinical trial: the microbiological and immunological effects of synbiotic consumption – a randomized double-blind placebo-controlled study in active Crohn’s disease [J]. Aliment Pharmacol Ther 32(7):872–883

    Article  CAS  PubMed  Google Scholar 

  • Sung V, Hiscock H, Tang MLK et al (2014) Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial [J]. BMJ 348(348):g2107

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzer C, Çoban D, Kamaci HO et al (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities [J]. Aquaculture 280(1–4):140–145

    Article  CAS  Google Scholar 

  • Teemu H, Seppo S, Jussi M et al (2008) Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria [J]. Int J Food Microbiol 125(2):170–175

    Article  CAS  PubMed  Google Scholar 

  • Teran CG, Teranescalera CN, Villarroel P (2009) Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children [J]. Int J Infect Dis 13(4):518–523

    Article  CAS  PubMed  Google Scholar 

  • Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells [J]. Biotechnol Lett 31(4):571–576

    Article  CAS  PubMed  Google Scholar 

  • Ting Z, Rui L, Chunyuan Y (2011) Comparison and correlation between human food trial and clinical trial of health food [J]. Cap Med 15:61–63

    Google Scholar 

  • Tsai C-C, Liang H-W, Yu B et al (2011) The relative efficacy of different strain combinations of lactic acid bacteria in the reduction of populations of Salmonella enterica typhimurium in the livers and spleens of mice [J]. FEMS Immunol Med Microbiol 63(1):44–53

    Article  CAS  PubMed  Google Scholar 

  • Tsai TL, Li AC, Chen YC et al (2015) Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480 [J]. Tumor Biol 36(5):1–15

    Article  Google Scholar 

  • Tulini FL, Winkelströter LK, De Martinis EC (2013) Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard artisanal cheese [J]. Anaerobe 22(8):57–63

    Article  CAS  PubMed  Google Scholar 

  • Tuomola EM, Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures [J]. Int J Food Microbiol 41(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Tursi A, Brandimarte G, Papa A et al (2010) Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study [J]. Am J Gastroenterol 105(10):2218–2227

    Article  PubMed  PubMed Central  Google Scholar 

  • Usman, Hosono A (2001) Hypocholesterolemic effect of Lactobacillus gasseri SBT0270 in rats fed a cholesterol-enriched diet [J]. J Dairy Res 68(4):617

    Article  CAS  PubMed  Google Scholar 

  • Verdenelli MC, Ricciutelli M, Gigli F et al (2010) Investigation of the antigenotoxic properties of the probiotic Lactobacillus rhamnosus IMC 501® by gas chromatography-mass spectrometry [J]. Ital J Food Sci 22(4):1889–1891

    Google Scholar 

  • Viaud S, Saccheri F, Mignot G et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide [J]. Science 342(6161):971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Jiang L, Liu AP et al (2008) Analysis of antigenotoxicity of Lactobacillus salivarius by high performance liquid chromatography [J]. Chin J Anal Chem 36(6):740–744

    Article  CAS  Google Scholar 

  • Wang AN, Yu HF, Xin G et al (2009) Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets [J]. Antonie Van Leeuwenhoek 96(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang J, Wang M et al (2010) Removal of microcystin-LR by lactic acid bacteria [J]. Wei Sheng Wu Xue Bao 50(6):729

    CAS  PubMed  Google Scholar 

  • Wang SM, Zhang LW, Fan RB et al (2014) Induction of HT-29Â cells apoptosis by lactobacilli isolated from fermented products [J]. Res Microbiol 165(3):202–214

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Ping W (2013) Effects of Lactobacillus on the antioxidant function of CEF cell infected by IBV [J]. Chin J Vet Med 49(1):27–29

    Google Scholar 

  • Wei C, Qixiao Z (2014) The alleviation and antagonistic effects of probiotics against food safety risk factors [J]. J Chin Inst Food Sci Technol 14(11):1–10

    Google Scholar 

  • Weisen X (2008) Effect of Lactobacillus delbrueckii subsp. delbrueckii on the micro flora in broiler gut [J]. J Anhui Agric Sci 36(8):3228–3229

    Google Scholar 

  • Wolf G, Hammes WP (1988) Effect of hematin on the activities of nitrite reductase and catalase in lactobacilli [J]. Arch Microbiol 149(3):220–224

    Article  CAS  Google Scholar 

  • Wollowski I, Ji ST, Bakalinsky AT et al (1999) Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats [J]. J Nutr 129(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Wu DC, Sun MZ, Zhang CL et al (2014) Antioxidant properties of Lactobacillus and its protecting effects to oxidative stress Caco-2 cells [J]. J Anim Plant Sci 24(6):1766–1771

    Google Scholar 

  • Xi W, Xia L, Xiao-yan X et al (2010) Comparative studies on antioxidant activities of different lactic acid bacterial strains [J]. Food Sci 31(9):197–201

    Google Scholar 

  • Xiangchen M, Xue L, Lei Y et al (2015) In vitro evaluation of two Lactobacillus plantarum as potential probiotics [J]. J Northeast Agric Univ 46(9):44–51

    Google Scholar 

  • Xiaobo Z, Yanhua H, Junming C et al (2014) Effects of 5 kinds of Lactobacillus on growth performance, body composition, serum biochemical indices and intestinal microflora of Tilapia (Oreochromis niloticus X O. aureu) [J]. Chin J Anim Nutr 26(7):2009–2017

    Google Scholar 

  • Xiao-li H, Jin S, Guo-wei L et al (2009) Scavenging of hydroxyl radical by Lactobacillus spp. in mimetic colon conditions [J]. Chin J Microecol 21(6):488–492

    Google Scholar 

  • Xiao-ling L, Jun-ming C, Zhe-shi K et al (2013) Effect of dietary Lactobacillus on growth performance, non-specific immune enzymes activities and intestinal microflora of Oreochromis niloticus [J]. Guangdong Agric Sci 40(1):123–126

    Google Scholar 

  • Xinyou S (1989) Medical laboratory animal science [M]. Shaanxi Science and Technology Press, Shaanxi

    Google Scholar 

  • Yang L, Yu-xing G, Dao-dong P (2012) Comparative antioxidant activity of four species of lactic acid bacteria in vitro [J]. Food Sci 11:25–29

    Google Scholar 

  • Yao-Qing LI, Sun J, Guo-We LE et al (2011) Lactic acid bacteria inhibit mucosal oxidative stress of colon in dextran sulfate sodium-induced colitic mice [J]. Chin J Microecol 23(2):97–100

    Google Scholar 

  • Yeo MH (2010) Effect of lactic acid bacteria on the regulation of blood glucose level in streptozotocin-induced diabetic rats [J]. Reprod Dev Biol 34:299–304

    Google Scholar 

  • Yeom M, Sur BJ, Park J et al (2015) Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota [J]. J Appl Microbiol 119(2):560–570

    Article  CAS  PubMed  Google Scholar 

  • Yin R, Zhai Q, Yu L et al (2016) The binding characters study of lead removal by Lactobacillus plantarum CCFM8661 [J]. Eur Food Res Technol 242(10):1–9

    Article  Google Scholar 

  • Ying A, Yan-jie L, Hai-bin Z et al (2012) Study on evaluating the promote effect of Mei Yi Tian active Lactobacillus drinks on immunity and physical intestinal canal [J]. Chin J Dis Control Prev 16(7):629–632

    Google Scholar 

  • Yong G, Zhao-min L, Tao F et al (2013) Effect of compound probiotics preparation growth on performance of piglets [J]. J Gansu Agric Univ 48(5):32–35

    Google Scholar 

  • Yu L, Lin F, Gangfu C et al (2011) Effect of Lactobacillus fermentum supplementation on growth performance, digestive and absorptive function of juvenile Jian carp. Chin J Anim Nutr 23(8):1386–1393

    Google Scholar 

  • Yuan XQ, Sun J, Chang GF et al (2009) Lactic acid bacteria binding to mice Peyer’s patches and its immunoregulation [J]. Chin J Microecol 21(7):577–580

    CAS  Google Scholar 

  • Yuanyuan Z, Yanling Y, Guangming H et al (2013) Comparative study on tolerance of different probiotics to simulated gastrointestinal tract in vitro [J]. Feed Ind 17:43–45

    Google Scholar 

  • Yuefan Z, Nan L (2011) Recent advances in experimental to animal models of inflammatory bowel disease [J]. Chin J Gastroenterol Hepatol 20(7):678–681

    Google Scholar 

  • Zhai Q, Narbad A, Chen W (2015) Dietary strategies for the treatment of cadmium and lead toxicity [J]. Nutrients 7(1):552–571

    Article  PubMed  Google Scholar 

  • Zhai Q, Tian F, Wang G et al (2016) The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices [J]. RSC Adv 6(8):5990–5998

    Article  CAS  Google Scholar 

  • Zhang YH, Li HD, Li B et al (2014a) Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells [J]. Oncol Rep 31(2):919–925

    Article  CAS  PubMed  Google Scholar 

  • Zhang WL, Du Y, Zhai MM et al (2014b) Cadmium exposure and its health effects: a 19-year follow-up study of a polluted area in China [J]. Sci Total Environ 470-471(2):224–228

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Xiao X, Dong Y et al (2015) Effect of fermented wheat germ extract with lactobacillus plantarum dy-1 on HT-29 cell proliferation and apoptosis [J]. J Agric Food Chem 63(9):2449–2457

    Article  CAS  PubMed  Google Scholar 

  • Zhaoyong B, Jingyu C, Beizhong H (2011) Effective degradation of 4-nitroquinoline-1-oxide by Lactobacillus salivarius [J]. China Brew 30(7):67–69

    Google Scholar 

  • Zhou M, Yu H, Yin X et al (2014a) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen [J]. PLoS One 9(2):e89004

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Zhu J, Yu H et al (2014b) Investigation into in vitro and in vivo models using intestinal epithelial IPEC-J2 cells and Caenorhabditis elegans for selecting probiotic candidates to control porcine enterotoxigenic Escherichia coli [J]. J Appl Microbiol 117(1):217–226

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhao L, Guo H et al (2011) Immunomodulatory effects of novel bifidobacterium and lactobacillus strains on murine macrophage cells [J]. Afr J Microbiol Res 5(1):8–15

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhai, Q., Chen, W. (2019). Functional Evaluation Model for Lactic Acid Bacteria. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7832-4_7

Download citation

Publish with us

Policies and ethics