Skip to main content

Microbes Are Essential Components of Arsenic Cycling in the Environment: Implications for the Use of Microbes in Arsenic Remediation

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Arsenic (As) is a ubiquitously distributed toxic element, and it has been present in the environment since the very beginning of evolution. Hence, microbes to higher organisms possess mechanisms to tackle arsenic that include conversion of arsenic from one form to another including inorganic to organic and vice versa. Microbes present in different environments possess a number of pathways for arsenic conversion and therefore play a crucial role in arsenic cycling in the environment. Arsenic contamination has emerged as a serious problem in some parts of the world in the past few decades. These include Bangladesh, India, China, Vietnam, Pakistan, etc. The presence of arsenic in soil and groundwater in affected areas also leads to the entry of arsenic in plants. The level of arsenic accumulation in plants including edible portions depends on the arsenic species. In this scenario, microbes, which affect arsenic speciation, can play a role in regulating arsenic accumulation and consequently arsenic stress in plants. The microbes can therefore be utilized effectively to safeguard crop plants from arsenic. If the microbes also possess plant growth-promoting ability, this strategy can impart further benefits. A number of plant growth-promoting microbes (PGPMs) have been identified, characterized and utilized for the improvement of growth of plants in arsenic-contaminated environment as well as for the reduction of arsenic levels in plants. This review presents the role of microbes in arsenic cycling in the environment and discusses efforts for their utilization in the amelioration of arsenic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andres, J., & Bertin, P. N. (2016). The microbial genomics of arsenic. FEMS Microbiology Reviews, 40, 299–322.

    Article  CAS  Google Scholar 

  • Awasthi, S., Chauhan, R., Dwivedi, S., Srivastava, S., Srivastava, S., & Tripathi, R. D. (2018). A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: A promising and feasible approach. Environmental and Experimental Botany, 150, 115–126.

    Article  CAS  Google Scholar 

  • Awasthi, S., Chauhan, R., Srivastava, S., & Tripathi, R. D. (2017). The journey of arsenic from soil to grain in rice. Frontiers in Plant Science, 8, 1007.

    Article  Google Scholar 

  • Bentley, R., & Chasteen, T. G. (2002). Microbial methylation of metalloids: Arsenic antimony and bismuth. Microbiology and Molecular Biology Reviews, 66, 250–271.

    Article  CAS  Google Scholar 

  • Das, J., & Sarkar, P. (2018). Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Science Total Environment, 624, 1106–1118.

    Article  CAS  Google Scholar 

  • Feng, M., Schrlau, J. E., Snyder, G. H., Chen, M., Cisar, J. L., & Cai, Y. (2005). Arsenic transport and transformation associated with MSMA application on a golf course green. Journal of Agricultural and Food Chemistry, 53, 3556–3562.

    Article  CAS  Google Scholar 

  • Ghosh, M., Shen, J., & Rosen, B. P. (1999). Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 96, 5001–5006.

    Article  CAS  Google Scholar 

  • Ivan, F. P., Salomon, M. V., Berli, F., Bottini, R., & Piccoli, P. (2017). Characterization of the As(III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Applied Soil Ecology, 109, 60–68.

    Article  Google Scholar 

  • Krafft, T., & Macy, J. M. (1998). Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. European Journal of Biochemistry, 255, 647–653.

    Article  CAS  Google Scholar 

  • Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6, 80.

    Article  Google Scholar 

  • Laverman, A. M., Blum, J. S., Schaerfer, J. K., Phillips, E., Lovley, D. R., & Oremland, R. S. (1995). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology, 61, 3556–3561.

    CAS  Google Scholar 

  • Li, H., Chen, X., & Wong, M. (2016). Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere, 145, 224–230.

    Article  CAS  Google Scholar 

  • Maki, T., Takeda, N., Hasegawa, H., & Ueda, K. (2006). Isolation of monomethylarsonic acid-mineralizing bacteria from arsenic contaminated soils of Ohkunoshima Island. Applied Organometallic Chemistry, 20, 538–544.

    Article  CAS  Google Scholar 

  • Mallick, I., Bhattacharyya, C., Mukherji, S., Dey, D., Sarkar, S. C., Mukhopadhyay, U. K., et al. (2018). Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. Science Total Environment, 610–611, 1239–1250.

    Article  Google Scholar 

  • Meng, X. Y., Qin, J., Wang, L. H., Duan, G. L., Sun, G. X., Wu, H. L., Chu, C. C., Ling, H. Q., Rosen, B. P., & Zhu, Y. G. (2011). Arsenic biotransformation and volatilization in transgenic rice. The New Phytologist, 191, 49–56.

    Article  CAS  Google Scholar 

  • Mesa, V., Navazas, A., González-Gil, R., González, A., Weyens, N., Lauga, B., et al. (2017). Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied and Environmental Microbiology, 83, e03411–e03416.

    Article  CAS  Google Scholar 

  • Mestrot, A., Feldmann, J., Krupp, E. M., Hossain, M. S., Roman-Ross, G., & Meharg, A. A. (2011). Field fluxes and speciation of arsines emanating from soils. Environmental Science & Technology, 45, 1798–1804.

    Article  CAS  Google Scholar 

  • Mukherjee, G., Chinmay, S., Naskar, N., Mukherjee, A., Mukherjee, A., Lahiri, S., Majumder, A. L., & Seal, A. (2018). An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficiency in Solanum nigrum. Scientific Reports, 8, 6979.

    Article  Google Scholar 

  • Mukhopadhyay, R., Rosen, B. P., Phung, L. T., & Silver, S. (2002). Microbial arsenic: From geocycles to genes and enzyme. FEMS Microbiology Reviews, 26, 311–325.

    Article  CAS  Google Scholar 

  • Muller, D., Lievremont, D., Simeonova, D. D., et al. (2003) Arsenite oxidase aox genes from a metal-resistant betaproteobacterium. Journal of Bacteriology 185, 135–41.

    Article  CAS  Google Scholar 

  • Newmann, D. K., Ahmann, D., & Morel, F. M. M. (1998). A brief review of microbial arsenate respiration. Geomicrobiology Journal, 15, 255–268.

    Article  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2005). Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13, 45–49.

    Article  CAS  Google Scholar 

  • Paez-Espino, D., Tamames, J., de Lorenzo, V., & Canovas, D. (2009). Microbial responses to environmental arsenic. Biometals, 22, 117–130.

    Article  CAS  Google Scholar 

  • Podgorski, J. E., Eqani, S. A. M. A. S., Khanam, T., Ullah, R., Shen, H., & Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, 3, e1700935.

    Article  Google Scholar 

  • Prum, C., Dolphen, R., & Thiravetyan, P. (2018). Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius– Endophytic Arthrobacter creatinolyticus interactions. Journal of Environmental Management, 213, 11–19.

    Article  CAS  Google Scholar 

  • Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., & Rensing, C. (2006). Arsenic detoxification and evolution of trimethylarsine gasby a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 103, 2075–2080.

    Article  CAS  Google Scholar 

  • Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., et al. (2013). Groundwater arsenic contamination throughout China. Science, 341, 866–868.

    Article  Google Scholar 

  • Roychowdhury, R., Roy, M., Rakshit, A., Sarkar, S., & Mukherjee, P. (2018). Arsenic bioremediation by indigenous heavy metal resistant bacteria of fly ash pond. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-018-2428-z.

    Article  CAS  Google Scholar 

  • Santini, J. M., & vanden Hoven, R. N. (2004). Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. Journal of Bacteriology, 186, 1614–1619.

    Article  CAS  Google Scholar 

  • Sharma, S., Anand, G., Singh, N., & Kapoor, R. (2017). Arbuscular mycorrhizal augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Frontiers in Plant Science, 8, 906.

    Article  Google Scholar 

  • Singh, S., Shrivastava, A., Barla, A., & Bose, S. (2015). Isolation of arsenic-resistant bacteria from Bengal delta sediments and their efficacy in arsenic removal from soil in association with Pteris vittata. Geomicrobiology Journal, 32, 712–723.

    Article  CAS  Google Scholar 

  • Spagnoletti, F. N., Balestrasse, K., Lavado, R. S., & Giacometti, R. (2016). Arbuscular mycorrhiza detoxifying responses against arsenic and pathogenic fungus in soybean. Ecotoxicology and Environmental Safety, 133, 47–56.

    Article  CAS  Google Scholar 

  • Srivastava, S., Suprasanna, P., & D’Souza, S. F. (2012). Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: A critical appraisal. International Journal of Phytoremediation, 14, 506–517.

    Article  CAS  Google Scholar 

  • Tang, J., Lv, Y., Chen, F., Zhang, W., Rosen, B. P., & Zhao, F. J. (2016). Arsenic methylation in Arabidopsis thaliana expressing an algal arsenite methyltransferase gene increases arsenic phytotoxicity. Journal of Agricultural and Food Chemistry, 64, 2674–2681.

    Article  CAS  Google Scholar 

  • Thongnok, S., Siripornadulsil, W., & Siripornadulsil, S. (2018). Mitigation of arsenic toxicity and accumulation in hydroponically grownrice seedlings by co-inoculation with arsenite-oxidizing and cadmium-tolerant bacteria. Ecotoxicology and Environmental Safety, 162, 591–602.

    Article  CAS  Google Scholar 

  • Tripathi, P., Singh, P. C., Mishra, A., Chaudhry, V., Mishra, S., Tripathi, R. D., et al. (2013). Trichoderma inoculation ameliorates arsenic induced phytotoxic changes in gene expression and stem anatomy of chickpea (Cicer arietinum). Ecotoxicology and Environmental Safety, 89, 8–14.

    Article  CAS  Google Scholar 

  • Upadhyay, A. K., Singh, N. K., Singh, R., & Rai, U. N. (2016). Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicology and Environmental Safety, 124, 68–73.

    Article  CAS  Google Scholar 

  • Upadhyay, M. K., Yadav, P., Shukla, A., & Srivastava, S. (2018). Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Frontiers in Environmental Science, 6, 24.

    Article  Google Scholar 

  • Verma, S., Verma, P. K., Meher, A. K., Dwivedi, S., Bansiwal, A. K., Pande, V., et al. (2016). A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: Phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics, 8, 344.

    Article  CAS  Google Scholar 

  • Wang, P., Sun, G., Jia, Y., Meharg, A. A., & Zhu, Y. (2014). A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. Journal of Environmental Sciences, 26, 371–381.

    Article  Google Scholar 

  • Wang, Q., Xiong, D., Zhao, P., Yu, X., Tu, B., & Wang, G. (2011). Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. Journal of Applied Microbiology, 111, 1065–1074.

    Article  CAS  Google Scholar 

  • Yang, H. C., & Rosen, B. P. (2016). New mechanisms of bacterial arsenic resistance. Biomedical Journal, 39, 5–13.

    Article  Google Scholar 

  • Yin, X. X., Chen, J., Qin, J., Sun, G.-X., Rosen, B. P., & Zhu, Y. G. (2011). Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiology, 156, 1631–1638.

    Article  CAS  Google Scholar 

  • Zargar, K., Conard, A., Bernick, D. L., Lowe, T. M., Stolc, V., Hoeft, S., Oremland, R. S., Stolz, J., & Saltikov, C. W. (2012). ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductase. Environmental Microbiology, 14, 1635–1645.

    Article  CAS  Google Scholar 

  • Zhang, J., Xu, Y., Cao, T., Chen, J., Rosen, B. P., & Zhao, F. J. (2017). Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant and Soil, 416, 259–269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S., Shukla, K. (2019). Microbes Are Essential Components of Arsenic Cycling in the Environment: Implications for the Use of Microbes in Arsenic Remediation. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_10

Download citation

Publish with us

Policies and ethics