Skip to main content

Differences in Fracture Risk Between Countries, Within Countries and Between Social and Ethnic Groups

  • Chapter
  • First Online:
Bone Health

Abstract

Disparities exist in fracture incidence, prevalence, rates and risk factors between social and ethnic groups. Whilst genetic predisposition, such as sex and ethnicity, influence the risk of fractures, a significant contribution is made by environmental stressors. In addition to the direct effect of lifestyle behaviours and key risk factors for fracture such as vitamin D deficiency and prevalent diabetes, or more specifically the length of time with diabetes, biological mechanisms may underpin the well-documented social gradient of fracture. Across the life course, social disadvantage increases exposure to cumulative stressors, influences responses to stressors and results in a heightened inflammatory state, thereby increasing osteoporotic fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev. 1985;7:178–208. https://doi.org/10.1093/oxfordjournals.epirev.a036281.

    Article  CAS  PubMed  Google Scholar 

  2. Cummings S, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7. https://doi.org/10.1016/S0140-6736(02)08657-9.

    Article  PubMed  Google Scholar 

  3. Kanis JA, Johnell O, Oden A, Sernbo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B. Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int. 2000;11(8):669–74.

    Article  CAS  PubMed  Google Scholar 

  4. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16(Suppl 2):S3–7. https://doi.org/10.1007/s00198-004-1702-6.

    Article  PubMed  Google Scholar 

  5. van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone. 2001;29(6):517–22. https://doi.org/10.1016/S8756-3282(01)00614-7.

    Article  PubMed  Google Scholar 

  6. Holloway KL, Brennan SL, Kotowicz MA, Bucki-Smith G, Timney EN, Dobbins AG, Williams LJ, Pasco JA. Prior fracture as a risk factor for future fracture in an Australian cohort. Osteoporos Int. 2015;26(2):629–35. https://doi.org/10.1007/s00198-014-2897-9.

    Article  CAS  PubMed  Google Scholar 

  7. Papadimitriou N, Tsilidis KK, Orfanos P, Benetou V, Ntzani EE, Soerjomataram I, Künn-Nelen A, Pettersson-Kymmer U, Eriksson S, Brenner H, Schöttker B. Burden of hip fracture using disability-adjusted life-years: a pooled analysis of prospective cohorts in the CHANCES consortium. Lancet Public Health. 2017;2(5):e239–46. https://doi.org/10.1016/S2468-2667(17)30046-4.

    Article  PubMed  Google Scholar 

  8. Otmar R, Kotowicz MA, Brennan SL, Bucki-Smith G, Korn S, Pasco JA. Personal and psychosocial impacts of clinical fracture in men. J Men’s Health. 2013;10(1):22–7. https://doi.org/10.1016/j.jomh.2012.10.006.

    Article  Google Scholar 

  9. Pasco JA, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA. The human cost of fracture. Osteoporos Int. 2005;16:2046–52. https://doi.org/10.1007/s00198-005-1997-y.

    Article  PubMed  Google Scholar 

  10. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878. https://doi.org/10.1016/S0140-6736(98)09075-8.

    Article  CAS  PubMed  Google Scholar 

  11. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C, IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56. https://doi.org/10.1007/s00198-012-1964-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cauley JA, Chalhoub D, Kassem AM, Fuleihan GH. Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol. 2014;10:338–51. https://doi.org/10.1038/nrendo.2014.51.

    Article  PubMed  Google Scholar 

  13. Ballane G, Cauley JA, Luckey MM, Fuleihan GH. Secular trends in hip fracture worldwide: opposing trends East versus West. J Bone Miner Res. 2014;29(8):1745–55. https://doi.org/10.1002/jbmr.2218.

    Article  PubMed  Google Scholar 

  14. Zengin A, Prentice A, Ward KA. Ethnic differences in bone health. Front Endocrinol. 2015;6(24):1–6. https://doi.org/10.1016/j.bone.2016.07.018.

    Article  Google Scholar 

  15. Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38. https://doi.org/10.1016/j.bone.2017.01.024.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cauley JA. Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res. 2011;469(7):1891–9. https://doi.org/10.1007/s11999-011-1863-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shin MH, Zmuda JM, Barrett-Connor E, Sheu Y, Patrick AL, Leung PC, Kwok A, Kweon SS, Nam HS, Cauley JA, MrOS Research Group. Race/ethnic differences in associations between bone mineral density and fracture history in older men. Osteoporos Int. 2013;25(3):837–45. https://doi.org/10.1007/s00198-013-2503-6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res. 2005;20(2):185–94. https://doi.org/10.1359/JBMR.041007.

    Article  PubMed  Google Scholar 

  19. Aspray TJ, Prentice A, Cole TJ, Sawo Y, Reeve J, Francis RM. Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Gambian women. J Bone Miner Res. 1996;11(7):1019–25. https://doi.org/10.1002/jbmr.5650110720.

    Article  CAS  PubMed  Google Scholar 

  20. Aspray TJ, Prentice A, Cole TJ. The bone mineral content of weight-bearing bones is influenced by the ratio of sitting to standing height in elderly Gambian women. Bone. 1995;17:261–3. https://doi.org/10.1016/8756-3282(95)00216-Z.

    Article  CAS  PubMed  Google Scholar 

  21. Schnitzler CM, Pettifor JM, Mesquita JM, Bird MD, Schnaid E, Smyth AE. Histomorphometry of iliac crest bone in 346 normal black and white South African adults. Bone Miner. 1990;10:183–99.

    Article  CAS  PubMed  Google Scholar 

  22. Dhanwal DK, Dennison EM, Harvey NC, Cooper C. Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop. 2011;45(1):15–22. https://doi.org/10.4103/0019-5413.73656.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lips P, Chapuy MC, Dawson-Hughes B, Pols HA, Holick MF. An international comparison of serum 25-hydroxyvitamin D measurements. Osteoporos Int. 1999;9(5):394–7. https://doi.org/10.1007/s001980050162.

    Article  CAS  PubMed  Google Scholar 

  24. Prentice A. Vitamin D deficiency: a global perspective. Nutr Rev. 2008;66(10 Suppl 2):S153–64. https://doi.org/10.1111/j.1753-4887.2008.00100.x.

    Article  PubMed  Google Scholar 

  25. Cosman F, Shen V, Morgan D, Gordon S, Parisien M, Nieves J, Lindsay R. Biochemical responses of bone metabolism to 1,25-dihydroxyvitamin D administration in black and white women. Osteoporos Int. 2000;11(3):271–7. https://doi.org/10.1007/s001980050292.

    Article  CAS  PubMed  Google Scholar 

  26. van Ballegooijen AJ, Robinson-Cohen C, Katz R, Criqui M, Budoff M, Li D, Siscovick D, Hoofnagle A, Shea SJ, Burke G, de Boer IH, Kestenbaum B. Vitamin D metabolites and bone mineral density: the multi-ethnic study of atherosclerosis. Bone. 2015;78:186–93. https://doi.org/10.1016/j.bone.2015.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arya V, Bhambri R, Godbole MM, Mithal A. Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporos Int. 2004;15(1):56–61. https://doi.org/10.1007/s00198-003-1491-3.

    Article  CAS  PubMed  Google Scholar 

  28. Marwaha RK, Yenamandra VK, Sreenivas V, Sahay R, Baruah MP, Desai A, Kurvilla S, Joseph S, Unnikrishnan AG, Lakshmy R, Apoorva C, Sharma VK, Sethuraman G. Regional and seasonal variations in ultraviolet B irradiation and vitamin D synthesis in India. Osteoporos Int. 2015;27(4):1611–7. https://doi.org/10.1007/s00198-015-3427-0.

    Article  CAS  PubMed  Google Scholar 

  29. Roy DK, Berry JL, Pye SR, Adams JE, Swarbrick CM, King Y, Silman AJ, O’Neill TW. Vitamin D status and bone mass in UK South Asian women. Bone. 2007;40(1):200–4.

    Article  CAS  PubMed  Google Scholar 

  30. Tamaki J, Iki M, Sato Y, Kajita E, Nishino H, Akiba T, Matsumoto T, Kagamimori S, JPOS Study Group. Total 25-hydoxyvitamin D levels predict fracture risk: results from the 15-year follow-up of the Japanese population-based osteoporosis (JPS) cohort study. Osteoporos Int. 2017;28(6):1903–13. https://doi.org/10.1007/s00198-017-3967-6.

    Article  CAS  PubMed  Google Scholar 

  31. Gao C, Qiao J, Li SS, Yu WJ, He JW, Fu WZ, Zhang ZL. The levels of bone turnover markers 25(OH)D and PTH and their relationship with bone mineral density in postmenopausal women in a suburban district in China. Osteoporos Int. 2017;28(1):211–8. https://doi.org/10.1007/s00198-016-3692-6.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Daghri NM. Vitamin D in Saudi Arabia: Prevalence, distribution and disease associations. J Steroid Biochem Molecular Biol. 2016;175:102–7. https://doi.org/10.1016/j.jsbmb.2016.12.017.

    Article  CAS  Google Scholar 

  33. Alfawaz H, Tamim H, Alharbi S, Aljaser S, Tamimi W. Vitamin D status among patients visiting a tertiary care center in Riyadh, Saudi Arabia: a retrospective review of 3475 cases. BMC Public Health. 2014;14(1):159. https://doi.org/10.1186/1471-2458-14-159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Daghri NM, Aljohani N, Rahman S, Sabico S, Al-Attas OS, Alokail MS, Al-Ajlan A, Chrousos GP. Serum 25-hydroxyvitamin D status among Saudi children with and without a history of fracture. J Endocrinol Investig. 2016;39(10):1125–30.

    Article  CAS  Google Scholar 

  35. Kharroubi A, Saba E, Smoom R, Bader K, Darwish H. Serum 25-hydroxyvitamin D and bone turnover markers in Palestinian postmenopausal osteoporosis and normal women. Arch Osteoporos. 2017;12(1):13. https://doi.org/10.1007/s11657-017-0306-7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aspray TJ, Yan L, Prentice A. Parathyroid hormone and rates of bone formation are raised in perimenopausal rural Gambian women. Bone. 2005;36(4):710–20. https://doi.org/10.1016/j.bone.2005.01.002.

    Article  CAS  PubMed  Google Scholar 

  37. Prentice A, Yan L, Jarjou LM, Dibba B, Laskey MA, Stirling DM, Fairweather-Tait S. Vitamin D status does not influence the breast-milk calcium concentration of lactating mothers accustomed to a low calcium intake. Acta Paediatr. 1997;86(9):1006–8.

    Article  CAS  PubMed  Google Scholar 

  38. Prentice A, Jarjou LM, Stirling DM, Buffenstein R, Fairweather-Tait S. Biochemical biomarkers of calcium and bone metabolism during 18 months of lactation in Gambian women accustomed to a low calcium intake and in those consuming a calcium supplement. J Clin Endocrinol Metab. 1998;83(4):1059–66. https://doi.org/10.1111/j.1651-2227.1997.tb15189.x.

    Article  CAS  PubMed  Google Scholar 

  39. Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr. 2000;71(2):544–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kruger MC, Kruger IM, Wentzel-Viljoen E, Kruger A. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover. Nutr Res. 2011;31(10):748–58. https://doi.org/10.1016/j.nutres.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  41. Tangoh DA, Apinjoh TO, Mahmood Y, Nyingchu RV, Tangunyi BA, Nji EN, Azhar A, Achidi EA. Vitamin D status and its associated risk factors among adults in the southwest region of Cameroon. J Nutr Metab. 2018;2018:1–9. https://doi.org/10.1155/2018/4742574. Article ID 4742574.

    Article  Google Scholar 

  42. Leslie WD, Lentle B. Race/ethnicity and fracture risk assessment: an issue that is more than skin deep. J Clin Densitom. 2006;9(4):406–12.

    Article  PubMed  Google Scholar 

  43. Majumdar SR, Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, Kanis JA. Longer duration of diabetes strongly impacts fracture risk assessment: the Manitoba BMD cohort. J Clin Endocrinol Metab. 2016;101(11):4489–96. https://doi.org/10.1155/2018/4742574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouillon R. Diabetic bone disease. Calcif Tissue Int. 1991;49:155–60.

    Article  CAS  PubMed  Google Scholar 

  45. Ferrari SL, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R, El-Hajj Fuleihan G, Josse R, kendler DL, Kraenzlin M, Suzuki A, Pierroz DD, Schwartz AV, Leslie WD, on behalf of the Bone and Diabetes Working Group of IOF. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int. 2018;29(12):2585–96. https://doi.org/10.1007/s00198-018-4650-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32:1134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49. https://doi.org/10.1016/j.diabres.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  48. Starup-Linde J, Frost M, Vestergaard P, Abrahamsen B. Epidemiology of fractures in diabetes. Calcif Tissue Int. 2017;100(2):109–21. https://doi.org/10.1007/s00223-016-0175-x.

    Article  CAS  PubMed  Google Scholar 

  49. Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone, sweet bone--osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8(5):297–305. https://doi.org/10.1038/nrendo.2011.233.

    Article  CAS  PubMed  Google Scholar 

  50. Cunningham J. Socio-economic gradients in self-reported diabetes for indigenous and non-indigenous Australians aged 18-64. Aust N Z J Public Health. 2010;34(Suppl 1):S18–24.

    Article  PubMed  Google Scholar 

  51. Minges KE, Zimmet P, Magliano DJ, Dunstan DW, Brown A, Shaw JE. Diabetes prevalence and determinants in indigenous Australian populations: a systematic review. Diabetes Res Clin Pract. 2011;93(2):139–49. https://doi.org/10.1016/j.diabres.2011.06.012.

    Article  PubMed  Google Scholar 

  52. Wang Z, Hoy WE, Damin S. Incidence of type 2 diabetes in aboriginal Australians: an 11-year prospective cohort study. BMC Public Health. 2010;10(1):487. https://doi.org/10.1186/1471-2458-10-487.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wong YYE, Flicker L, Draper G, Lai MMY, Waldron N. Hip fractures among indigenous Western Australians from 1999 to 2009. Int Med J. 2012;43(12):1287–92.

    Article  Google Scholar 

  54. Brennan-Olsen SL, Vogrin S, Leslie WD, Kinsella R, Toombs M, Duque G, Hosking SM, Holloway KL, Doolan BJ, Williams LJ, Page RS, Pasco JA, Quirk SE. Fractures in indigenous compared to non-indigenous populations: a systematic review of rates and aetiology. Bone Rep. 2017;6:145–58. https://doi.org/10.1016/j.bonr.2017.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leslie WD, Derksen S, Prior HJ, Lix LM, Metge C, O’Neil J. The interaction of ethnicity and chronic disease as risk factors for osteoporotic fractures: a comparison in Canadian aboriginals and non-aboriginals. Osteoporos Int. 2006;17(9):1358–68. https://doi.org/10.1007/s00198-006-0111-4.

    Article  CAS  PubMed  Google Scholar 

  56. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational study. J Clin Endocrinol Metab. 2006;91(9):3404–10. https://doi.org/10.1210/jc.2006-0614.

    Article  CAS  PubMed  Google Scholar 

  57. Looker AC, Eberhardt MS, Saydah SH. Diabetes and fracture risk in older U.S. adults. Bone. 2016;82:9–15. https://doi.org/10.1016/j.bone.2014.12.008.

    Article  PubMed  Google Scholar 

  58. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J, China National Diabetes and Metabolic Disorders Study Group. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362(12):1090–101.

    Article  CAS  PubMed  Google Scholar 

  59. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, Li Y, Zhao Z, Qin X, Jin D, Zhou M, Tang X, Hu Y, Wang L. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515–23. https://doi.org/10.1001/jama.2017.7596.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Federation ID, editor. International diabetes federation diabetes atlas, 8th ed. United Kingdom; 2017.

    Google Scholar 

  61. Unnikrishnan R, Anjana RM, Mohan V. Diabetes in South Asians: is the phenotype different? Diabetes. 2014;63(1):53–5. https://doi.org/10.2337/db13-1592.

    Article  CAS  PubMed  Google Scholar 

  62. Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Rev Endocrinol. 2016;12(6):357–70. https://doi.org/10.1038/nrendo.2016.53.

    Article  PubMed  Google Scholar 

  63. Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, Adhikari P, Rao PV, Saboo B, Kumar A, Bhansali A. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017;5(8):585–96. https://doi.org/10.1016/S2213-8587(17)30174-2.

    Article  PubMed  Google Scholar 

  64. Ntuk UE, Celis-Morales CA, Mackay DF, Sattar N, Pell JP, Gill JMR. Association between grip strength and diabetes prevalence in black, South-Asian, and white European ethnic groups: a cross-sectional analysis of 418,656 participants in the UK biobank study. Diabet Med. 2017;34(8):1120–8.

    Article  CAS  PubMed  Google Scholar 

  65. Bailey SL, Ayles H, Beyers N, Godfrey-Faussett P, Muyoyeta M, du Toit E, Yudkin JS, Floyd S. Diabetes mellitus in Zambia and the Western Cape province of South Africa: prevalence, risk factors, diagnosis and management. Diabetes Res Clin Pract. 2016;118:1–11. https://doi.org/10.1016/j.diabres.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Manne-Goehler J, Atun R, Stokes A, Goehler A, Houinato D, Houehanou C, Hambou MM, Mbenza BL, Sobngwi E, Balde N, Mwangi JK. Diabetes diagnosis and care in sub-Saharan Africa: pooled analysis of individual data from 12 countries. Lancet Diabetes Endocrinol. 2016;4(11):903–12. https://doi.org/10.1016/S2213-8587(16)30181-4.

    Article  PubMed  Google Scholar 

  67. Sundufu AJ, Bockarie CN, Jacobsen KH. The prevalence of type 2 diabetes in urban Bo, Sierra Leone, and in the 16 countries of the West Africa region. Diabetes Metab Res Rev. 2017;33(7):e2904. https://doi.org/10.1002/dmrr.2904.

    Article  CAS  Google Scholar 

  68. Shen J, Kondal D, Rubinstein A, Irazola V, Gutierrez L, Miranda JJ, Bernabe-Ortiz A, Lazo-Porras M, Levitt N, Steyn K, Bobrow K, Ali MK, Prabhakaran D, Tandon N. A multiethnic study of pre-diabetes and diabetes in LMIC. Glob Heart. 2016;11(1):61–70. https://doi.org/10.1016/j.gheart.2015.12.015.

    Article  PubMed  Google Scholar 

  69. Brennan SL, Henry MJ, Wluka AE, Nicholson GC, Kotowicz MA, Williams JW, Pasco JA. BMD in population-based adult women is associated with socioeconomic status. J Bone Miner Res. 2009;24(5):809–15. https://doi.org/10.1359/jbmr.081243.

    Article  PubMed  Google Scholar 

  70. Brennan SL, Henry MJ, Kotowicz MA, Nicholson GC, Zhang Y, Pasco JA. Incident hip fracture and social disadvantage in an Australian population aged 50 years or greater. Bone. 2011;48:607–10. https://doi.org/10.1016/j.bone.2010.10.175.

    Article  CAS  PubMed  Google Scholar 

  71. Farahmand BY, Persson PG, Michaelsson K, Baron JA, Parker MG, Ljunghall S. Socioeconomic status, marital status and hip fracture risk: a population-based case-control study. Osteoporos Int. 2000;11(9):803–8. https://doi.org/10.1007/s001980070060.

    Article  CAS  PubMed  Google Scholar 

  72. Guilley E, Herrmann F, Rapin C-H, Hoffmeyer P, Rizzoli R, Chevalley T. Socioeconomic and living conditions are determinants of hip fracture incidence and age occurrence among community-dwelling elderly. Osteoporos Int. 2011;22(2):647–53. https://doi.org/10.1007/s00198-010-1287-1.

    Article  CAS  PubMed  Google Scholar 

  73. Icks A, Haastert B, Wildner M, Becker C, Rapp K, Dragano N, Meyer G, Rosenbauer J. Hip fractures and area level socioeconomic conditions: a population-based study. BMC Public Health. 2009;9:114. https://doi.org/10.1186/1471-2458-9-114.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Johnell O, Borgstrom F, Jonsson B, Kanis J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos Int. 2007;18(3):333–7. https://doi.org/10.1007/s00198-006-0245-4.

    Article  CAS  PubMed  Google Scholar 

  75. Jones S, Johansen A, Brennan J, Butler J, Lyons RA. The effect of socioeconomic deprivation on fracture incidence in the United Kingdom. Osteoporos Int. 2004;15:520–4. https://doi.org/10.1007/s00198-003-1564-3.

    Article  PubMed  Google Scholar 

  76. Quah C, Boulton C, Moran C. The influence of socioeconomic status on the incidence, outcome and mortality of fractures of the hip. J Bone Joint Surg Br. 2011;93-B(6):801–5. https://doi.org/10.1302/0301-620X.93B6.24936.

    Article  Google Scholar 

  77. Szanton SL, Seplaki CL, Thorpe RJ Jr, Allen JK, Fried LP. Socioeconomic status is associated with frailty: the Women’s Health and Aging Studies. J Epidemiol Community Health. 2010;64(1):63–7. https://doi.org/10.1136/jech.2008.078428.

    Article  CAS  PubMed  Google Scholar 

  78. Vestergaard P, Rejnmark L, Mosekilde L. Socioeconomic aspects of fractures within universal public healthcare: a nationwide case-control study from Denmark. Scand J Public Health. 2006;34(4):371–7. https://doi.org/10.1080/14034940500441223.

    Article  PubMed  Google Scholar 

  79. Zingmond DS, Soohoo NF, Silverman SL. The role of socioeconomic status on hip fracture. Osteoporos Int. 2006;17(10):1562–8. https://doi.org/10.1007/s00198-006-0161-7.

    Article  CAS  PubMed  Google Scholar 

  80. Brennan SL, Pasco JA, Urquhart DM, Oldenburg B, Hanna FS, Wluka AE. The association between socioeconomic status and osteoporotic fracture in population-based adults: a systematic review. Osteoporos Int. 2009;20(9):1487–97. https://doi.org/10.1007/s00198-008-0822-9.

    Article  CAS  PubMed  Google Scholar 

  81. Brennan SL, Pasco JA, Urquhart DM, Oldenburg B, Hanna F, Wluka AE. Educational achievement and fracture risk: response to Clark and Tobias. Osteoporos Int. 2010;21:1623. https://doi.org/10.1007/s00198-009-1112-x.

    Article  Google Scholar 

  82. Brennan SL, Yan L, Lix LM, Morin SN, Majumdar SR, Leslie WD. Sex and age-specific associations between income and incident major osteoporotic fractures in Canadian men and women: a population-based analysis. Osteoporos Int. 2015;26:59–65.

    Article  CAS  PubMed  Google Scholar 

  83. Brennan SL, Holloway KL, Williams LJ, Kotowicz MA, Bucki-Smith G, Moloney DJ, Dobbins AG, Timney EN, Pasco JA. The social gradient of fractures at any skeletal site in men and women: data from the Geelong osteoporosis study fracture grid. Osteoporos Int. 2015;26(4):1351–9. https://doi.org/10.1007/s00198-014-3004-y.

    Article  CAS  PubMed  Google Scholar 

  84. Bacon WE, Hadden WC. Occurrence of hip fractures and socioeconomic position. J Aging Health. 2000;12(2):193–203. https://doi.org/10.1177/089826430001200203.

    Article  CAS  PubMed  Google Scholar 

  85. Boonen S, Autier P, Opdecam P, Broos PL, Haentjens P, Baillon JM, Bentin J, Bouillon R, Closon MC, Grivegnee AR. Hip fractures in elderly women from a socioeconomic perspective. A prospective cost study in Belgium. Tijdschrift voor Geneeskunde. 2000;56(3):170–6.

    Article  Google Scholar 

  86. Crandall CJ, Han W, Greendale GA, Seeman T, Tepper P, Thurston R, Karvonen-Gutierrez C, Karlamangla AS. Socioeconomic status in relation to incident fracture risk in the study of Women’s Health Across the Nation. Osteoporos Int. 2014;25(4):1379–88. https://doi.org/10.1007/s00198-013-2616-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, Eastell R, Prince RL, Eisman JA, Jones G, Sambrook PN, Reid IR, Dennison EM, Wark J, Richards B, Uitterlinden AG, Spector TD, Esapa C, Cox RD, Brown SDM, Thakker RV, Addison KA, Bradbury LA, Centre JA, Cooper C, Cremin C, Estrada K, Felsenberg D, Gluer C-C, Hadler J, Henry MJ, Hofman A, Kotowicz MA, Makovery J, Nguyen SC, Nguyen TV, Pasco JA, Pryce K, Reid DM, Rivadeneira F, Roux C, Stefansson K, Styrkarsdottir U, Thorleifsson G, Tichawangana R, Evans DM, Brown MA. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genetics. 2011;7(4):e1001372. https://doi.org/10.1371/journal.pgen.1001372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, González-Macías J, Kähönen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren Ö, Lorenc RS, Marc J, Mellström D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gómez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs JB, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimäki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501. https://doi.org/10.1038/ng.2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Centre JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65. https://doi.org/10.1056/NEJMoa0801197.

    Article  CAS  PubMed  Google Scholar 

  90. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12. https://doi.org/10.1016/S0140-6736(08)60599-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Delgado-Calle J, Riancho JA. The role of DNA methylation in common skeletal disorders. Biology. 2012;1:698–713. https://doi.org/10.3390/biology1030698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harvey N, Dennison E, Cooper C. Osteoporosis: a life course approach. J Bone Miner Res. 2014;29(9):1917–25. https://doi.org/10.1002/jbmr.2286.

    Article  PubMed  Google Scholar 

  93. Low FM, Gluckman PD, Hanson MA. Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases. Epigenomics. 2011;3(3):279–94. https://doi.org/10.2217/epi.11.17.

    Article  CAS  PubMed  Google Scholar 

  94. Delgado-Calle J, Fernandez AF, Sainz J, Zarrabeitia MT, Sanudo C, Garcia-Renedo R, Perez-Nunez MI, Garcia-Ibarbia C, Fraga MF, Riancho JA. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013;65(1):197–205. https://doi.org/10.1002/art.37753.

    Article  CAS  PubMed  Google Scholar 

  95. Kang MI, Kim HS, Jung YC, Kim YH, Hong SJ, Kim MK, Baek KH, Kim CC, Rhyu MG. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem. 2007;102:224–39. https://doi.org/10.1002/jcb.21291.

    Article  CAS  PubMed  Google Scholar 

  96. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A. 2012;109(Suppl 2):17253–60. https://doi.org/10.1073/pnas.1121249109.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tehranifar P, Wu H-C, Fan X, Flom JD, Ferris JS, Cho YH, Gonzalez K, Santella RM, Terry MB. Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics. 2013;8(1):23–7. https://doi.org/10.4161/epi.22989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McGuinness D, McGlynn LM, Johnson PCD, MacIntyre A, Batty DG, Burns H, Cavanagh J, Deans KA, Ford I, McConnachie A, McGinty A, McLean J, Millar K, Packard CJ, Sattar NA, Tannahill C, Velupillai YN, Shiels PG. Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol. 2012;41(1):151–60. https://doi.org/10.1093/ije/dyr215.

    Article  PubMed  Google Scholar 

  99. Tung J, Barreiro LB, Johnson ZP, Hansen KD, Michopoulos V, Toufexis D, Michelini K, Wilson ME, Gilad Y. Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proc Natl Acad Sci U S A. 2012;109(17):6490–5. https://doi.org/10.1073/pnas.1202734109.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Foley DL, Craig JM, Morley R, Olsson CJ, Dwyer T, Smith K, Saffery R. Prospects for epigenetic epidemiology. Am J Epidemiol. 2009;169:389–400. https://doi.org/10.1093/aje/kwn380.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Saban KL, Mathews HL, DeVon HA, Janusek LW. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 2014;5(5):346–55. https://doi.org/10.14336/AD.2014.0500346.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brennan-Olsen SL, Page RS, Berk M, Riancho JA, Leslie WD, Wilson SG, Saban KL, Janusek L, Pasco JA, Hodge JM, Quirk SE, Hyde NK, Hosking SM, Williams LJ. DNA methylation and the social gradient of osteoporotic fracture: a conceptual model. Bone. 2016;84:204–12. https://doi.org/10.1016/j.bone.2015.12.015.

    Article  CAS  PubMed  Google Scholar 

  103. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, et al. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34(3):206–22. https://doi.org/10.1016/j.ctrv.2007.11.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon L. Brennan-Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brennan-Olsen, S.L., Zengin, A., Duckham, R.L., Hosking, S.M., Talevski, J., Hyde, N.K. (2019). Differences in Fracture Risk Between Countries, Within Countries and Between Social and Ethnic Groups. In: Miszkiewicz, J., Brennan-Olsen, S., Riancho, J. (eds) Bone Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-7256-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7256-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7255-1

  • Online ISBN: 978-981-13-7256-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics