Skip to main content

Electroencephalogram: Expanded Applications in Clinical and Nonclinical Settings

  • Chapter
  • First Online:
Application of Biomedical Engineering in Neuroscience
  • 775 Accesses

Abstract

Electroencephalography (EEG) has been used for the understanding of brain functions and in clinical neurosciences for more than eight decades. Its importance in applied fields related to cognition has assumed more importance in spite of advances in functional neuroimaging in recent years. This article reviews methods in EEG analysis and functional significance of oscillatory synchrony in different bands as related to cognition. It then further mentions the potential role of EEG as biomarker and its use in studying consumer behaviour and effects of meditation by mentioning a few examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubel DH (1982) Cortical neurobiology: a slanted historical perspective. Annu Rev Neurosci 5(1):363–370

    Article  CAS  Google Scholar 

  2. Sturm A, König P (2009) Time–frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers? J Neurosci Methods 185(1):133–142

    Article  Google Scholar 

  3. Brandimonte MA, Bruno N, Collina S, Pawlik P, d’Ydewalle G (eds) (2006) Psychological concepts: an international historical perspective. Psychology Press, Hove

    Google Scholar 

  4. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  Google Scholar 

  5. Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235. https://doi.org/10.1016/j.neuron.2015.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  CAS  Google Scholar 

  7. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612

    Article  CAS  Google Scholar 

  8. Schoffelen J, Poort J, Oostenveld R, Fries P (2011) Selective movement preparation is subserved by selective increases in corticomuscular gamma-band coherence. J Neurosci 31(18):6750–6758. https://doi.org/10.1523/jneurosci.4882-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fingelkurts AA, Fingelkurts AA (2017) Information flow in the brain: ordered sequences of metastable states. Special issue “Symmetry and information” (ISSN:2078-2489). Information 8(1):22. https://doi.org/10.3390/info8010022

    Article  Google Scholar 

  10. Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862

    Article  Google Scholar 

  11. Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behaviour. The MIT Press, Cambridge, MA

    Google Scholar 

  12. Hammond DC (2005) What is neuro feedback? J Neurother 10(4):25–36. https://doi.org/10.1300/J184v10n04_04

    Article  Google Scholar 

  13. Rangaswamy M (2002) Beta power in the EEG of alcoholics. J Soc Biol Psychiatry 51:831–842

    Article  Google Scholar 

  14. Schomer DL, da Silva FHL (1999) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields, 4th edn. Lippincott Williams & Wilkins, Philadelphia. Ed. A. Glass, pp 103–120. Plenum, New York

    Google Scholar 

  15. Başar E, Stampfer HG (1985) Important associations among EEG-dynamics, event related potentials, short-term memory and learning. Int J Neurosci 26:161–180

    Article  Google Scholar 

  16. Basar E (1999) Brain function and oscillations. II. Integrative brain function. Neurophysiology and cognitive processes. Springer, Berlin/Heidelberg

    Google Scholar 

  17. Meyer L, Grigutsch M, Schmuck N, Gaston P4, Friederici AD (2015) Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension. Cortex 71:205–218. https://doi.org/10.1016/j.cortex.2015.06.027

    Article  PubMed  Google Scholar 

  18. Thézé R, Guggisberg AG, Nahum L, Schnider A (2016) Rapid memory stabilization by transient theta coherence in the human medial temporal lobe. Hippocampus 26:445–454. https://doi.org/10.1002/hipo.22534Varela

    Article  PubMed  Google Scholar 

  19. Başar E (1980) EEG–brain dynamics. Relation between EEG and brain evoked potentials. Elsevier, Amsterdam

    Google Scholar 

  20. Başar E, Schürmann M (1997) Functional correlates of alphas Panel discussion of the conference ‘Alpha edited by processes in the brain’. Int J Psychophysiol 26(1–3):455–474. https://doi.org/10.1016/s0167-8760(97)00782-4

    Article  PubMed  Google Scholar 

  21. Başar E, Yordanova J, Kolev V, Başar-Eroglu C (1997) Is the alpha rhythm a control parameter for brain responses? Biol Cybern 76(6):471–480. https://doi.org/10.1007/s004220050360

    Article  PubMed  Google Scholar 

  22. Klimesch W, Schimke H, Schwaiger J (1994) Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr Clin Neurophysiol 91(6):428–441. https://doi.org/10.1016/0013-4694(94)90164-3

    Article  CAS  PubMed  Google Scholar 

  23. Morgan AH, Macdonald H, Hilgard AE (1974) EEG alpha: lateral asymmetry related to task, and hypnotizability. Psychophysiology 11(3):275–282. https://doi.org/10.1111/j.1469-8986.1974.tb00544.x

    Article  CAS  PubMed  Google Scholar 

  24. McKee G, Humphrey B, McAdam DW (1973) Scaled lateralization of alpha activity during linguistic and musical tasks. Psychophysiology 10(4):441–443

    Article  CAS  Google Scholar 

  25. Rebert CS, Low DW (1978) Differential hemispheric activation during complex visuomotor performance. Electroencephalogr Clin Neurophysiol 44:724–734

    Article  CAS  Google Scholar 

  26. Duffy FH, Bartels PH, Burchfiel JL (1981) Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephalogr Clin Neurophysiol 51(5):455–462

    Article  CAS  Google Scholar 

  27. Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded effect of stimulus contrast. J Neurophysiol 94:479–490

    Article  Google Scholar 

  28. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  CAS  Google Scholar 

  29. Fries P (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563. https://doi.org/10.1126/science.10554651563

    Article  CAS  PubMed  Google Scholar 

  30. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716. 4

    Article  CAS  Google Scholar 

  31. Buzsáki G, Schomburg EW (2015) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18(4):484–489. https://doi.org/10.1038/nn.39521

    Article  PubMed  PubMed Central  Google Scholar 

  32. Woodman GF (2010) A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophy 72(8):2031–2046

    Article  Google Scholar 

  33. CDC(Centers for Disease Control and Prevention) et al (2012) MMWR Surveill Summ 61(3):1–19

    Google Scholar 

  34. Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA (2013) Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord 5(1):24. https://doi.org/10.1186/1866-1955-5-24

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  Google Scholar 

  36. Mathuranath PS, George A, Ranjith N et al (2012) Incidence of Alzheimer’s disease in India: a 10 years follow-up study. Neurol India 60(6):625–630. https://doi.org/10.4103/0028-3886.105198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dauwels J, Vialatte F, Musha T, Cichocki A et al (2010) NeuroImage 49(1):668–693. https://doi.org/10.1016/j.neuroimage.2009.06.056

    Article  CAS  PubMed  Google Scholar 

  38. Jeong J, Gore JC, Peterson BS (2001) Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin Neurophysiol 112(5):827–835

    Article  CAS  Google Scholar 

  39. Stam CJ, de Haan W, Daffertshofer A et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(1):213–224

    Article  CAS  Google Scholar 

  40. Ktonas PY, Golemati S, Xanthopoulos P et al (2009) Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers? J Neurosci Methods 185(1):133–142

    Article  CAS  Google Scholar 

  41. Han CX, Wang J, Yi GS, Che YQ (2013) Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn 7(4):351–359. https://doi.org/10.1007/s11571-013-9247-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bylsma FW, Peysers CE, Folstein SE, Ross C et al (1994) EEG power spectra in Huntington’s disease: clinical and neuropsychological correlates. Neuropsychologia 32(2):137–150

    Article  CAS  Google Scholar 

  43. Odish OFF, Johnsen K, van Someren P, Roos RAC, van Dijk JG (2018) EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification. Sci Rep 8:16090. https://doi.org/10.4329/wjr.v6.i7.471

    Article  PubMed  PubMed Central  Google Scholar 

  44. Swartz BE (1998) Timeline of the history of EEG and associated field. Electroencephalogr Clin Neurophysiol 106:173–176

    Article  CAS  Google Scholar 

  45. Rothschild M, Thorson E, Reeves B, Hirsch J, Goldstein R (1986) EEG activity and the processing of television commercials. Commun Res 13(2):182–220

    Article  Google Scholar 

  46. Rothschild M, Hyun YJ (1990) Predicting memory for components of TV commercials from EEG. J Consum Res 16(4):472–478

    Article  Google Scholar 

  47. Ohme R, Matukin M, Szczurko T (2010) Neurophysiology uncovers secrets of TV commercials. Markt 49:133. https://doi.org/10.1007/s12642-010-0034-7

    Article  Google Scholar 

  48. Jones WJ, Childers TL, Jiang Y (2012) The shopping brain: math anxiety modulates brain responses to buying decisions. Biol Psychol 89(1):201–213

    Article  Google Scholar 

  49. Astolfi L, Fallani FD, Cincotti F, Mattia D, Bianchi L, Marciani M, Babiloni F (2008) Neural basis for brain responses to TV commercials: a high-resolution EEG study. IEEE Trans Neural Syst Rehabil Eng 16(6):522–531. https://doi.org/10.1109/tnsre.2008.2009784

    Article  PubMed  Google Scholar 

  50. Chen M, Ma Q, Li M, Lai H, Wang X, Shu L (2010) Cognitive and emotional conflicts of counter-conformity choice in purchasing books online: an event-related potentials study. Biol Psychol 85(3):437–445. https://doi.org/10.1016/j.biopsycho.2010.09.006

    Article  PubMed  Google Scholar 

  51. Chew LH, Teo J, Mountstephens J (2015) Aesthetic preference recognition of 3D shapes using EEG. Cogn Neurodyn 10(2):165–173. https://doi.org/10.1007/s11571-015-9363-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cheung M, Law D, Yip J (2014) Evaluating aesthetic experience through personal-appearance styles: a behavioral and electrophysiological study. PLoS One 9(12):e115112. https://doi.org/10.1371/journal.pone.0115112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cartocci G, Cherubino P, Rossi D, Modica E, Maglione AG, Flumeri GD, Babiloni F (2016) Gender and age related effects while watching TV advertisements: an EEG study. Comput Intell Neurosci 2016:1–10. https://doi.org/10.1155/2016/3795325

    Article  Google Scholar 

  54. Vecchiato G, Maglione AG, Cherubino P, Wasikowska B, Wawrzyniak A, Latuszynska A, Babiloni F (2014a) Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercials. Comput Math Method Med 2014:1–12. https://doi.org/10.1155/2014/912981

    Article  Google Scholar 

  55. Vecchiato G, Toppi J, Maglione AG, Olejarczyk E, Astolfi L, Mattia D, Babiloni F (2014b) Neuroelectrical correlates of trustworthiness and dominance judgments related to the observation of political candidates. Comput Math Method Med 2014:1–19. https://doi.org/10.1155/2014/434296

    Article  Google Scholar 

  56. Dmochowski JP, Bezdek MA, Abelson BP, Johnson JS, Schumacher EH, Parra LC (2014) Audience preferences are predicted by temporal reliability of neural processing. Nat Commun 5. https://doi.org/10.1038/ncomms5567

  57. Min B, Cho K, Sung J, Cho E (2014) Neurophysiological evidence for the country-of-origin effect. NeuroReport 25(4):274–278. https://doi.org/10.1097/wnr.0000000000000102

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang J, Han W (2014) The impact of perceived quality on online buying decisions. NeuroReport 25(14):1091–1098. https://doi.org/10.1097/wnr.0000000000000233

    Article  PubMed  Google Scholar 

  59. Kong W, Zhao X, Hu S, Vecchiato G, Babiloni F (2013) Electronic evaluation for video commercials by impression index. Cogn Neurodyn 7(6):531–535. https://doi.org/10.1007/s11571-013-9255

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boksem MAS, Smidts A (2015) Brain responses to movie trailers predict individual preferences for movies and their population-wide commercial success. J Mark Res 52(4):482–492

    Article  Google Scholar 

  61. Jin J, Wang C, Yu L, Ma Q (2015) Extending or creating a new brand. NeuroReport 26(10):572–577. https://doi.org/10.1097/wnr.0000000000000390

    Article  PubMed  Google Scholar 

  62. Berčík J, Horská E, Wang RW, Chen Y (2016) The impact of parameters of store illumination on food shopper response. Appetite 106:101–109. https://doi.org/10.1016/j.appet.2016.04.010

    Article  PubMed  Google Scholar 

  63. Tang YY, Holzel BK, Posner MI (2015) The neuroscience of mindfulness meditation. Nat Rev Neurosci 16:213–225. https://doi.org/10.1038/nrn3916

    Article  CAS  PubMed  Google Scholar 

  64. Lutz A, Slagter HA, Dunne JD, Davidson RJ (2008) Attention regulation and monitoring in meditation. Trends Cogn Sci 12(4):163–169. https://doi.org/10.1016/j.tics.2008.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  65. Marchand WR (2014) Neural mechanisms of mindfulness and meditation: evidence from neuroimaging studies. World J Radiol 6(7):471–479. https://doi.org/10.4329/wjr.v6.i7.471

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cahn BR, Polich J (2006) Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull 132(2):180–211. https://doi.org/10.1037/0033-2909.132.2.180

    Article  PubMed  Google Scholar 

  67. Hirai T (1974) Psychophysiology of Zen. Tokyo, IgakuShoin. https://sites.google.com/a/perthgrammar.co.uk/physics/courses/higher/particles-and-waves/35-interference-and-diffraction/351-interference

    Google Scholar 

  68. Taneli B, Krahne W (1987) EEG changes of transcendental meditation practitioners. Adv Biol Psychiatry 16:41–71

    Article  Google Scholar 

  69. Ray W, Cole H (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228(4700):750–752. https://doi.org/10.1126/science.3992243

    Article  CAS  PubMed  Google Scholar 

  70. Lehmann D, Faber P, Achermann P, Jeanmonod D, Gianotti LR, Pizzagalli D (2001) Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatry Res Neuroimaging 108(2):111–121. https://doi.org/10.1016/s0925-4927(01)00116-0

    Article  CAS  Google Scholar 

  71. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci 101(46):16369–16373. https://doi.org/10.1073/pnas.0407401101

    Article  CAS  PubMed  Google Scholar 

  72. Dentico D, Ferrarelli F, Riedner BA, Smith R, Zennig C, Lutz A, Davidson RJ (2016) Short meditation trainings enhance non-REM sleep low-frequency oscillations. PLoS One 11(2). https://doi.org/10.1371/journal.pone.0148961

    Article  Google Scholar 

  73. Gao J, Fan J, Wu BW, Zhang Z, Chang C, Hung Y, Sik HH (2016) Entrainment of chaotic activities in brain and heart during MBSR mindfulness training. Neurosci Lett 616:218–223. https://doi.org/10.1016/j.neulet.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  74. Lomas T, Ivtzan I, Fu C (2015) A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci Biobehav Rev 57:401–410. https://doi.org/10.1016/j.neubiorev.2015.09.018

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabhu, S. (2019). Electroencephalogram: Expanded Applications in Clinical and Nonclinical Settings. In: Paul, S. (eds) Application of Biomedical Engineering in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-13-7142-4_11

Download citation

Publish with us

Policies and ethics