Skip to main content

Highly Crosslinked UHMWPE for Joint Implants

  • Chapter
  • First Online:
UHMWPE Biomaterials for Joint Implants

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 13))

Abstract

Wear is a major obstacle limiting the longevity of implanted conventional UHMWPE components. Efforts to solve the wear problem in UHMWPE have spurred enormous studies in highly crosslinked UHMWPE (HXPE). HXPE-bearing couples have been clinically used in total joint arthroplasties for two decades, and the follow-up studies confirmed their effectiveness in reducing in vivo wear and related disease. This chapter provides a comprehensive review of crosslinking, oxidation and thermal stabilization, structure and property relationship, and in vitro and in vivo wear performance of HXPE for total joint replacements. The first part of this chapter describes the fundamental of UHMWPE crosslinking, including chemical reactions and the formation of crosslinked structures induced by high-energy radiations, detection of macro-free radicals by ESR, and calculation of crosslink density based on Flory theory. The second part outlines the oxidation due to irradiation-induced residual free radicals in HXPE and thermal treatments to eliminate the free radicals. The third part summarizes the effect of crosslinking on crystalline structures and mechanical properties, including fatigue, tensile, and impact properties of HXPE. The fourth part focuses on the wear mechanism and in vivo wear properties of HXPE. Finally, the fifth part reviews the follow-up studies of HXPE used in total hip and total knee arthroplasties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charnley J (1970) Total hip replacement by low-friction arthroplasty. Clin Orthop Relat Res 72:7–21

    CAS  Google Scholar 

  2. Dumbleton JH, Manley MT, Edidin AA (2002) A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplast 17:649–661

    Article  Google Scholar 

  3. Harris WH (1995) The problem is osteolysis. Clin Orthop Relat Res 311:46–53

    Google Scholar 

  4. Harris WH (2001) Wear and periprosthetic osteolysis – the problem. Clin Orthop Relat Res 393:66–70

    Article  Google Scholar 

  5. Cooper RA, McAllister CM, Borden LS, Bauer TW (1992) Polyethylene debris-induced osteolysis and loosening in uncemented total hip arthroplasty. J Arthroplast 7:285–290

    Article  CAS  Google Scholar 

  6. Kovacik MW, Gradisar IA Jr, Haprian JJ, Alexander TS (2000) Osteolytic indicators found in total knee arthroplasty synovial fluid aspirates. Clin Orthop Relat Res 379:186–194

    Article  Google Scholar 

  7. McKellop H, F-w S, Lu B, Campbell P, Salovey R (1999) Development of an extremely wear-resistant ultra high molecular weight polythylene for total hip replacements. J Orthop Res 17:157–167

    Article  CAS  Google Scholar 

  8. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH (2001) A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties – recipient of the 1999 HAP Paul Award. J Arthroplast 16:149–160

    Article  CAS  Google Scholar 

  9. Griffith M, Seidenstein M, Williams D, Charnley J (1978) Socket wear in Charnley low friction arthroplasty of the hip. Clin Orthop Relat Res (137):37–47

    Google Scholar 

  10. Charnley J, Halley DK (1975) Rate of wear in total hip replacement. Clin Orthop Relat Res 112:170–179

    Article  Google Scholar 

  11. McKellop HA, Shen FW, Campbell P, Ota T (1999) Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra high molecular weight polyethylene acetabular cups in a hip joint simulator. J Orthop Res 17:329–339

    Article  CAS  Google Scholar 

  12. Hopper RH, Young AM, Orishimo KF, Engh CA (2003) Effect of terminal sterilization with gas plasma or gamma radiation on wear of polyethylene liners. J Bone Joint Surg Am 85:464–468

    Article  Google Scholar 

  13. Kurtz SM, Muratoglu OK, Evans M, Edidin AA (1999) Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688

    Article  CAS  Google Scholar 

  14. Besong A, Tipper J, Ingham E, Stone M, Wroblewski B, Fisher J (1998) Quantitative comparison of wear debris from UHMWPE that has and has not been sterilised by gamma irradiation. J Bone Joint Surg (Br) 80:340–344

    Article  CAS  Google Scholar 

  15. Premnath V, Harris W, Jasty M, Merrill E (1996) Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem. Biomaterials 17:1741–1753

    Article  CAS  Google Scholar 

  16. Currier BH, Currier JH, Mayor MB, Lyford KA, Van Citters DW, Collier JP (2007) In vivo oxidation of γ-barrier–sterilized ultra–high-molecular-weight polyethylene bearings. J Arthroplast 22:721–731

    Article  Google Scholar 

  17. Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB (1996) Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplast 11:377–389

    Article  CAS  Google Scholar 

  18. Kurtz SM, Hozack WJ, Purtill JJ, Marcolongo M, Kraay MJ, Goldberg VM, Sharkey PF, Parvizi J, Rimnac CM, Edidin AA (2006) 2006 Otto Aufranc Award Paper: significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin Orthop Relat Res 453:47–57

    Article  Google Scholar 

  19. Kurtz SM, Rimnac CM, Hozack WJ, Turner J, Marcolongo M, Goldberg VM, Kraay MJ, Edidin AA (2005) In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 87:815–823

    Article  Google Scholar 

  20. Gencur SJ, Rimnac CM, Kurtz SM (2003) Failure micromechanisms during uniaxial tensile fracture of conventional and highly crosslinked ultra-high molecular weight polyethylenes used in total joint replacements. Biomaterials 24:3947–3954

    Article  CAS  Google Scholar 

  21. Medel FJ, Kurtz SM, Parvizi J, Klein GR, Kraay MJ, Rimnac CM (2011) In vivo oxidation contributes to delamination but not pitting in polyethylene components for total knee arthroplasty. J Arthroplast 26:802–810

    Article  Google Scholar 

  22. Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469:2262–2277

    Article  Google Scholar 

  23. Kurtz SM, Manley M, Wang A, Taylor S, Dumbleton J (2002) Comparison of the properties of annealed crosslinked (crossfire) and conventional polyethylene as hip bearing materials. Bull Hosp Jt Dis 61:17–26

    Google Scholar 

  24. Horii F, Zhu Q, Kitamaru R, Yamaoka H (1990) Carbon-13 NMR study of radiation-induced crosslinking of linear polyethylene. Macromolecules 23:977–981

    Article  CAS  Google Scholar 

  25. Muratoglu OK (2009) Highly crosslinked and melted UHMWPE. In: Kurtz SM (ed) UHMWPE biomaterials handbook, 2nd edn. Academic, Boston, pp 197–204

    Chapter  Google Scholar 

  26. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH, Gul R, McGarry F (1999) Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20:1463–1470

    Article  CAS  Google Scholar 

  27. Costa L, Carpentieri I, Bracco P (2008) Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym Degrad Stab 93:1695–1703

    Article  CAS  Google Scholar 

  28. Bracco P, Brunella V, Luda M, Zanetti M, Costa L (2005) Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer 46:10648–10657

    Article  CAS  Google Scholar 

  29. DeVries K, Smith R, Fanconi B (1980) Free radicals and new end groups resulting from chain scission: 1. y-irradiation of polyethylene. Polymer 21:949–956

    Article  CAS  Google Scholar 

  30. Igarashi M (1983) Free-radical identification by ESR in polyethylene and nylon. J Polym Sci Polym Chem Ed 21:2405–2425

    Article  CAS  Google Scholar 

  31. Lacoste J, Carlsson D (1992) Gamma-, photo-, and thermally-initiated oxidation of linear low density polyethylene: a quantitative comparison of oxidation products. J Polym Sci A Polym Chem 30:493–500

    Article  CAS  Google Scholar 

  32. Perez E, Vanderhart D (1988) A 13C CP-MAS NMR study of irradiated polyethylene. J Polym Sci B Polym Phys 26:1979–1993

    Article  CAS  Google Scholar 

  33. Randall JC (1990) Carbon 13 NMR of gamma-irradiated polyethylenes. In: Güven O (ed) Crosslinking and scission in polymers. Springer Netherlands, Dordrecht, pp 57–82

    Chapter  Google Scholar 

  34. Dole M, Milner D, Williams TF (1958) Irradiation of polyethylene. II. Kinetics of unsaturation effects. J Am Chem Soc 80:1580–1588

    Article  CAS  Google Scholar 

  35. Brunella V, Bracco P, Carpentieri I, Paganini M, Zanetti M, Costa L (2007) Lifetime of alkyl macroradicals in irradiated ultra-high molecular weight polyethylene. Polym Degrad Stab 92:1498–1503

    Article  CAS  Google Scholar 

  36. Bhateja SK, Duerst RW, Aus EB, Andrews EH (1995) Free radicals trapped in polyethylene crystals. J Macromol Sci Part B Phys 34:263–272

    Article  Google Scholar 

  37. Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinaro P (1998) Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials 19:659–668

    Article  CAS  Google Scholar 

  38. Costa L, Bracco P (2016) Mechanisms of cross-linking, oxidative degradation, and stabilization of UHMWPE. In: Kurtz SM (ed) UHMWPE biomaterials handbook, 3rd edn. William Andrew Publishing, Oxford, pp 467–487

    Chapter  Google Scholar 

  39. Jahan MS (2016) ESR insights into macroradicals in UHMWPE. In: Kurtz SM (ed) UHMWPE biomaterials handbook, 3rd edn. William Andrew Publishing, Oxford, pp 668–692

    Chapter  Google Scholar 

  40. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (1989) Polymer handbook. Wiley, New York

    Google Scholar 

  41. Llorente M, Mark J (1980) Model networks of end-linked poly (dimethylsiloxane) chains. 8. Networks having cross-links of very high functionality. Macromolecules 13:681–685

    Article  CAS  Google Scholar 

  42. Dijkstra DJ, Hoogsteen W, Pennings AJ (1989) Cross-linking of ultra-high molecular weight polyethylene in the melt by means of electron beam irradiation. Polymer 30:866–873

    Article  CAS  Google Scholar 

  43. Gent AN, Vickroy VV (1967) Elastic behavior, birefringence, and swelling of amorphous polyethylene networks. J Polym Sci Part A2 5:47–61

    Article  CAS  Google Scholar 

  44. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520

    Article  CAS  Google Scholar 

  45. Oral E, Malhi AS, Muratoglu OK (2006) Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 27:917–925

    Article  CAS  Google Scholar 

  46. Luo Y, Wang G, Lu Y, Chen N, Jiang B (1985) Location of radiation-induced crosslinks and damage in melt-crystallized polyethylene. Radiat Phys Chem 25:359–365

    CAS  Google Scholar 

  47. Yeh GSY, Chen CJ, Boose DC (1985) CPS K 843 radiation-induced crosslinking: effect on structure of polyethylene. Colloid Polym Sci 263:109–115

    Article  CAS  Google Scholar 

  48. Jahan MS, King MC, Haggard WO, Sevo KL, Parr JE (2001) A study of long-lived free radicals in gamma-irradiated medical grade polyethylene. Radiat Phys Chem 62:141–144

    Article  CAS  Google Scholar 

  49. Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinaro P (1998) In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials 19:1371–1385

    Article  CAS  Google Scholar 

  50. Sutula LC, Collier JP, Saum KA, Currier BH, Currier JH, Sanford WM, Mayor MB, Wooding RE, Sperling DK, Williams IR (1995) The Otto Aufranc Award: impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res (319):28–40

    Google Scholar 

  51. Wang A, Yau S-S, Essner A, Herrera L, Manley M, Dumbleton J (2008) A highly crosslinked UHMWPE for CR and PS total knee arthroplasties. J Arthroplast 23:559–566

    Article  Google Scholar 

  52. Kester MA, Herrera L, Wang A, Essner A (2007) Knee bearing technology: where is technology taking us? J Arthroplast 22:16–20

    Article  Google Scholar 

  53. Costa L, Jacobson K, Bracco P, Brach del Prever EM (2002) Oxidation of orthopaedic UHMWPE. Biomaterials 23:1613–1624

    Article  CAS  Google Scholar 

  54. Rueda DR, Hidalgo A, Calleja FJB (1978) An i.r. study of the “amorphous” phase in melt crystallized polyethylene. Spectrochim Acta Part A 34:475–480

    Article  Google Scholar 

  55. Medel FJ, Pena P, Cegoñino J, Gómez-Barrena E, Puertolas J (2007) Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes. J Biomed Mater Res Part B 83:380–390

    Article  Google Scholar 

  56. Fu J, Ghali BW, Lozynsky AJ, Oral E, Muratoglu OK (2010) Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting. Polymer 51:2721–2731

    Article  CAS  Google Scholar 

  57. Gomoll A, Wanich T, Bellare A (2002) J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J Orthop Res 20:1152–1156

    Article  CAS  Google Scholar 

  58. Zhao Y, Luo Y, Jiang B (1993) Effect of irradiation on crystallinity and mechanical properties of ultrahigh molecular weight polyethylene. J Appl Polym Sci 50:1797–1801

    Article  CAS  Google Scholar 

  59. Baker DA, Bellare A, Pruitt L (2003) The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res Part A 66A:146–154

    Article  CAS  Google Scholar 

  60. Gencur SJ, Rimnac CM, Kurtz SM (2006) Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene. Biomaterials 27:1550–1557

    Article  CAS  Google Scholar 

  61. Kurtz SM, Villarraga ML, Herr MP, Bergström JS, Rimnac CM, Edidin AA (2002) Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 23:3681–3697

    Article  CAS  Google Scholar 

  62. Yasuniwa M, Tsubakihara S, Yamaguchi M (1997) Lamellar thickening of polyethylene under high pressure. J Polym Sci B Polym Phys 35:535–543

    Article  CAS  Google Scholar 

  63. Oral E, Godleski-Beckos C, Ghali BW, Lozynsky AJ, Muratoglu OK (2009) Effect of cross-link density on the high pressure crystallization of UHMWPE. J Biomed Mater Res Part B 90B:720–729

    Article  CAS  Google Scholar 

  64. Simis KS, Bistolfi A, Bellare A, Pruitt LA (2006) The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials 27:1688–1694

    Article  CAS  Google Scholar 

  65. Butler MF, Donald AM, Ryan AJ (1998) Time resolved simultaneous small- and wide-angle X-ray scattering during polyethylene deformation—II. Cold drawing of linear polyethylene. Polymer 39:39–52

    Article  CAS  Google Scholar 

  66. Lin L, Argon A (1994) Structure and plastic deformation of polyethylene. J Mater Sci 29:294–323

    Article  CAS  Google Scholar 

  67. Puértolas JA, Medel FJ, Cegoñino J, Gomez-Barrena E, Ríos R (2006) Influence of the remelting process on the fatigue behavior of electron beam irradiated UHMWPE. J Biomed Mater Res Part B 76B:346–353

    Article  Google Scholar 

  68. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26:905–915

    Article  CAS  Google Scholar 

  69. Bistolfi A, Turell MB, Lee YL, Bellare A (2009) Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE. J Biomed Mater Res Part B 90:137–144

    Google Scholar 

  70. Urriés I, Medel FJ, Ríos R, Gómez-Barrena E, Puértolas JA (2004) Comparative cyclic stress–strain and fatigue resistance behavior of electron–beam- and gamma-irradiated ultrahigh molecular weight polyethylene. J Biomed Mater Res Part B 70B:152–160

    Article  Google Scholar 

  71. Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28:1643–1699

    Article  CAS  Google Scholar 

  72. Brooks NWJ, Mukhtar M (2000) Temperature and stem length dependence of the yield stress of polyethylene. Polymer 41:1475–1480

    Article  CAS  Google Scholar 

  73. Laurent MP, Johnson TS, Crowninshield RD, Blanchard CR, Bhambri SK, Yao JQ (2008) Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J Arthroplast 23:751–761

    Article  Google Scholar 

  74. Jasty M, Goetz DD, Bragdon CR, Lee KR, Hanson AE, Elder JR, Harris WH (1997) Wear of polyethylene acetabular components in total hip arthroplasty. An analysis of one hundred and twenty-eight components retrieved at autopsy or revision operations. J Bone Joint Surg Am 79:349–358

    Article  CAS  Google Scholar 

  75. Bragdon C, O’Connor D, Lowenstein J, Jasty M, Syniuta W (1996) The importance of multidirectional motion on the wear of polyethylene. Proc Inst Mech Eng Part H 210:157–165

    Article  CAS  Google Scholar 

  76. Wang A, Stark C, Dumbleton J (1996) Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses. Proc Inst Mech Eng Part H 210:141–155

    Article  CAS  Google Scholar 

  77. Wang A (2001) A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear 248:38–47

    Article  CAS  Google Scholar 

  78. O’Connor D, Bragdon C, Burke D, Jasty M, Lowenstein J, Harris W (1995) A 12 station upright hip simulator wear testing machine employing oscillating motion replicating the human gait cycle. In: 21st annual meeting of The Society for Biomaterials, San Francisco, 18–22 March 1995

    Google Scholar 

  79. Essner A, Sutton K, Wang A (2005) Hip simulator wear comparison of metal-on-metal, ceramic-on-ceramic and crosslinked UHMWPE bearings. Wear 259:992–995

    Article  CAS  Google Scholar 

  80. Muratoglu OK, Rubash HE, Bragdon CR, Burroughs BR, Huang A, Harris WH (2007) Simulated normal gait wear testing of a highly cross-linked polyethylene tibial insert. J Arthroplast 22:435–444

    Article  Google Scholar 

  81. Bragdon CR, Jasty M, Muratoglu OK, O’Connor DO, Harris WH (2003) Third-body wear of highly cross-linked polyethylene in a hip simulator1. J Arthroplast 18:553–561

    Article  Google Scholar 

  82. Bragdon CR, Jasty M, Muratoglu OK, Harris WH (2005) Third-body wear testing of a highly cross-linked acetabular liner: the effect of large femoral head size in the presence of particulate poly(methyl-methacrylate) debris. J Arthroplast 20:379–385

    Article  Google Scholar 

  83. Burroughs BR, Rubash HE, Harris WH (2002) Femoral head sizes larger than 32 mm against highly cross-linked polyethylene. Clin Orthop Relat Res 405:150–157

    Article  Google Scholar 

  84. Sorbie C (2003) Arthroplasty in the treatment of subcapital hip fracture. Orthopedics 26:337–341

    Article  Google Scholar 

  85. Saikko V, Calonius O, Keränen J (2002) Wear of conventional and cross-linked ultra-high-molecular-weight polyethylene acetabular cups against polished and roughened CoCr femoral heads in a biaxial hip simulator. J Biomed Mater Res 63:848–853

    Article  CAS  Google Scholar 

  86. Hall R, Unsworth A, Siney P, Wroblewski B (1996) Wear in retrieved Charnley acetabular sockets. Proc Inst Mech Eng, Part H 210:197–207

    Article  CAS  Google Scholar 

  87. Hall RM, Siney P, Unsworth A, Wroblewski BM (1997) The effect of surface topography of retrieved femoral heads on the wear of UHMWPE sockets. Med Eng Phys 19:711–719

    Article  CAS  Google Scholar 

  88. Sychterz CJ, Engh CA Jr, Swope SW, DE MN, Engh CA (1999) Analysis of prosthetic femoral heads retrieved at autopsy. Clin Orthop Relat Res 358:223–234

    Article  Google Scholar 

  89. Akagi M, Asano T, Clarke IC, Niiyama N, Kyomoto M, Nakamura T, Hamanishi C (2006) Wear and toughness of crosslinked polyethylene for total knee replacements: a study using a simulator and small-punch testing. J Orthop Res 24:2021–2027

    Article  Google Scholar 

  90. Kawanabe K, Clarke IC, Tamura J, Akagi M, Good VD, Williams PA, Yamamoto K (2001) Effects of A–P translation and rotation on the wear of UHMWPE in a total knee joint simulator. J Biomed Mater Res 54:400–406

    Article  CAS  Google Scholar 

  91. Tamura J, Clarke IC, Kawanabe K, Akagi M, Good VD, Williams PA, Masaoka T, Schroeder D, Oonishi H (2002) Micro-wear patterns on UHMWPE tibial inserts in total knee joint simulation. J Biomed Mater Res 61:218–225

    Article  CAS  Google Scholar 

  92. Harris WH (2009) The first 50 years of total hip arthroplasty: lessons learned. Clin Orthop Relat Res 467:28–31

    Article  Google Scholar 

  93. Parvizi J, Wade FA, Rapuri V, Springer BD, Berry DJ, Hozack WJ (2006) Revision hip arthroplasty for late instability secondary to polyethylene wear. Clin Orthop Relat Res 447:66–69

    Article  Google Scholar 

  94. Geerdink CH, Grimm B, Vencken W, Heyligers IC, Tonino AJ (2009) Cross-linked compared with historical polyethylene in THA: an 8-year clinical study. Clin Orthop Relat Res 467:979–984

    Article  Google Scholar 

  95. Green TR, Fisher J, Matthews JB, Stone MH, Ingham E (2000) Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res 53:490–497

    Article  CAS  Google Scholar 

  96. Fang H-W, Yang C-B, Chang C-H, Huang C-H, Liu H-L, Fang S-B (2006) The potential role of phagocytic capacity in the osteolytic process induced by polyethylene wear particles. J Int Med Res 34:655–664

    Article  CAS  Google Scholar 

  97. Martell JM, Berdia S (1997) Determination of polyethylene wear in total hip replacements with use of digital radiographs*. J Bone Joint Surg 79:1635–1641

    Article  CAS  Google Scholar 

  98. Crockarell JR Jr, Snearly CM (2012) Accuracy and precision of two computer-assisted methods of radiographic wear measurement in total hip arthroplasty. J Arthroplast 27:37–40

    Article  Google Scholar 

  99. Rubash H, Sinha R, Paprosky W, Engh C, Maloney W (1999) A new classification system for the management of acetabular osteolysis after total hip arthroplasty. Instr Course Lect 48:37–42

    CAS  Google Scholar 

  100. Geerdink CH, Grimm B, Vencken W, Heyligers IC, Tonino AJ (2008) The determination of linear and angular penetration of the femoral head into the acetabular component as an assessment of wear in total hip replacement: a comparison of four computer-assisted methods. J Bone Joint Surg (Br) 90-B:839–846

    Article  Google Scholar 

  101. Meneghini RM, Lovro LR, Smits SA, Ireland PH (2015) Highly cross-linked versus conventional polyethylene in posterior-stabilized total knee arthroplasty at a mean 5-year follow-up. J Arthroplast 30:1736–1739

    Article  Google Scholar 

  102. Geller JA, Malchau H, Bragdon C, Greene M, Harris WH, Freiberg AA (2006) Large diameter femoral heads on highly cross-linked polyethylene: minimum 3-year results. Clin Orthop Relat Res 447:53–59

    Article  Google Scholar 

  103. Snir N, Kaye ID, Klifto CS, Hamula MJ, Wolfson TS, Schwarzkopf R, Jaffe FF (2014) 10-year follow-up wear analysis of first-generation highly crosslinked polyethylene in primary total hip arthroplasty. J Arthroplast 29:630–633

    Article  Google Scholar 

  104. Engh CA Jr, Hopper RH Jr, Huynh C, Ho H, Sritulanondha S, Engh CA Sr (2012) A prospective, randomized study of cross-linked and non-cross-linked polyethylene for total hip arthroplasty at 10-year follow-up. J Arthroplast 27:2–7.e1

    Article  Google Scholar 

  105. Digas G, Kärrholm J, Thanner J, Herberts P (2007) 5-year experience of highly cross-linked polyethylene in cemented and uncemented sockets: two randomized studies using radiostereometric analysis. Acta Orthop 78:746–754

    Article  Google Scholar 

  106. Röhrl SM, Nivbrant B, Nilsson KG (2012) No adverse effects of submelt-annealed highly crosslinked polyethylene in cemented cups. Acta Orthop 83:148–152

    Article  Google Scholar 

  107. Kraay MJ, Moore RD, Martell JM, Rimnac CM (2010) Reassessment of computerized wear measurement for total hip arthroplasty with correction for projectional image distortion: a brief follow-up report. J Bone Joint Surg 92:1858–1867

    Article  Google Scholar 

  108. Callary SA, Campbell DG, Mercer G, Nilsson KG, Field JR (2013) Wear of a 5 megarad cross-linked polyethylene liner: a 6-year RSA study. Clin Orthop Relat Res 471:2238–2244

    Article  Google Scholar 

  109. Lee J-H, Lee BW, Lee B-J, Kim S-Y (2011) Midterm results of primary total hip arthroplasty using highly cross-linked polyethylene: minimum 7-year follow-up study. J Arthroplast 26:1014–1019

    Article  Google Scholar 

  110. D’Antonio JA, Capello WN, Ramakrishnan R (2012) Second-generation annealed highly cross-linked polyethylene exhibits low wear. Clin Orthop Relat Res 470:1696–1704

    Article  Google Scholar 

  111. Dowd JE, Sychterz CJ, Young AM, Engh CA (2000) Characterization of long-term femoral-head-penetration rates: association with and prediction of osteolysis*. JBJS 82:1102–1102

    Article  CAS  Google Scholar 

  112. Mall NA, Nunley RM, Zhu JJ, Maloney WJ, Barrack RL, Clohisy JC (2011) The incidence of acetabular osteolysis in young patients with conventional versus highly crosslinked polyethylene. Clin Orthop Relat Res 469:372–381

    Article  Google Scholar 

  113. Rodriguez JA (2008) Cross-linked polyethylene in total knee arthroplasty. Oppos J Arthroplast 23:31–34

    Article  Google Scholar 

  114. Hodrick JT, Severson EP, McAlister DS, Dahl B, Hofmann AA (2008) Highly crosslinked polyethylene is safe for use in total knee arthroplasty. Clin Orthop Relat Res 466:2806–2812

    Article  Google Scholar 

  115. Collier JP, Mayor MB, McNamara JL, Surprenant VA, Jensen RE (1991) Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin Orthop Relat Res (273):232–242

    Google Scholar 

  116. McKellop HA, Campbell P, Park S-H, Schmalzried TP, Grigoris P, Amstutz HC, Sarmiento A (1995) The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin Orthop Relat Res 311:3–20

    Google Scholar 

  117. Wright TM (2005) Polyethylene in knee arthroplasty: what is the future? Clin Orthop Relat Res 440:141–148

    Article  Google Scholar 

  118. Minoda Y, Aihara M, Sakawa A, Fukuoka S, Hayakawa K, Tomita M, Umeda N, Ohzono K (2009) Comparison between highly cross-linked and conventional polyethylene in total knee arthroplasty. Knee 16:348–351

    Article  Google Scholar 

  119. Meneghini RM, Ireland PH, Bhowmik-Stoker M (2016) Multicenter study of highly cross-linked vs conventional polyethylene in total knee arthroplasty. J Arthroplast 31:809–814

    Article  Google Scholar 

  120. Hinarejos P, Piñol I, Torres A, Prats E, Gil-Gómez G, Puig-Verdie L (2013) Highly crosslinked polyethylene does not reduce the wear in total knee arthroplasty: in vivo study of particles in synovial fluid. J Arthroplast 28:1333–1337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, G., Fu, J. (2019). Highly Crosslinked UHMWPE for Joint Implants. In: Fu, J., Jin, ZM., Wang, JW. (eds) UHMWPE Biomaterials for Joint Implants. Springer Series in Biomaterials Science and Engineering, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6924-7_2

Download citation

Publish with us

Policies and ethics