Skip to main content

Abstract

Microbes are an integral part of living soil not only in transforming nutrients in the soil but also with multiple functions in influencing soil health. There are specific microbes which help the plant to grow well in their presence by various mechanisms. The direct mechanism may include fixation of atmospheric nitrogen, synthesis of various phytohormones and enzymes, and solubilization of minerals in the soil, while the indirect mechanism includes inhibiting phytopathogens. Hence, such plant growth-promoting rhizobacteria (PGPR) need to be harnessed and exploited for sustainable agriculture. Some of the representative PGPR group includes Azotobacter, Azospirillum, Acinetobacter, Agrobacterium, Arthrobacter, Bacillus, Burkholderia, Pseudomonas, Serratia, Streptomyces, Rhizobium, Bradyrhizobium, Mesorhizobium, Frankia, and Thiobacillus. Demonstrations of these PGPR and their beneficial traits under glasshouse and field conditions are documented for a range of crops including cereals, legumes, fruits, vegetables, herbs, and ornamentals. Several industries are commercializing the potential PGPR strains as biofertilizers and as biocontrol agents. However, successful commercialization of PGPR in many developing countries is a distant dream largely due to the lack of well-developed technology, quality carrier material, quality control legislation, training programs, and on-farm demonstrations. The development of quality PGPR inoculum and its application will definitely lead to an ideal sustainable agricultural system. Further, PGPR is known for not only reducing the emission of greenhouse gases (GHGs) and carbon footprint but also increasing nutrient-use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Abd-Alla MH, El-Sayed ESA, Rasmey AHM (2013) Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 3:B182–B193

    Google Scholar 

  • Adhikari D, Kaneto M, Itoh K, Suyama K, Pokharel BB, Gaihre YK (2012) Genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties. Plant Soil 357:131–145

    Article  CAS  Google Scholar 

  • Agbessi S, Beausejour J, Dery C, Beaulieu C (2003) Antagonistic properties of two recombinant strains of Streptomyces melanosporofaciens obtained by intra-specific protoplast fusion. Appl Microbiol Biotechnol 62:233–238

    Article  CAS  PubMed  Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Alstrom S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Article  Google Scholar 

  • Ansari PG, Rao DLN, Pal KK (2014) Diversity and phylogeny of soybean rhizobia in Central India. Ann Microbiol 64(4):1553–1565

    Article  Google Scholar 

  • Arasu MV, Esmail GA, Al-Dhabi NA, Ponmurugan K (2016) Managing pests and diseases of grain legumes with secondary metabolites from actinomycetes. In: Gopalakrishnan S, Sathya A, Vijayabharathi R (eds) Plant growth promoting actinobacteria. Springer, Singapore, pp 83–98

    Chapter  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and function. Adv Agron 62:45–151

    Article  CAS  Google Scholar 

  • Ashokvardhan T, Rajithasri AB, Prathyusha P, Satyaprasad K (2014) Actinomycetes from Capsicum annuum L. rhizosphere soil have the biocontrol potential against pathogenic fungi. Int J Curr Microbiol App Sci 3(4):894–903

    Google Scholar 

  • Barona-Gomez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3 and (2) Streptomyces ambofaciens ATCC 23877. Microbiology 152:3355–3366

    Article  CAS  PubMed  Google Scholar 

  • Baskar K, Ignacimuthu S (2012) Bioefficacy of violacein against Asian armyworm Spodopteralitura Fab. (Lepidoptera: Noctuidae). J Saudi Soc Agric Sci 11:73–77

    CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Biate DL, Kumar LV, Ramadoss D, Kumari A, Naik S, Reddy KK, Annapurna K (2014) Genetic diversity of soybean root nodulating bacteria. In: Maheshwari DK (ed) Bacterial diversity in sustainable agriculture. Springer, Cham, pp 131–145

    Chapter  Google Scholar 

  • Bieber B, Nuske J, Ritzau M, Grafe U (1998) Alnumycin a new naphthoquinone antibiotic produced by an endophytic Streptomyces sp. J Antibiot 51:381–382

    Article  CAS  Google Scholar 

  • Bloem J, de Ruiter P, Bouwman LA (1997) Soil food webs and nutrient cycling in agro-ecosystems. In: van Elsas JD, Trevors JT, Wellington HME (eds) Modern soil microbiology. Marcel Dekker, New York, pp 245–278

    Google Scholar 

  • Boeck VD, Fukuda DS, Abbott BJ, Debono M (1989) Deacylation of echinocandin B by Actinoplanes utahensis. J Antibiot 42:382–388

    Article  CAS  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Brown ME (1972) Plant growth substances produced by microorganisms of soil and rhizosphere. J Appl Bacteriol 35:443–451

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) Enzymes in the environment. Marcel Dekker, New York

    Book  Google Scholar 

  • Cacciari I, Grappelli A, Lippi D, Pietrosanti W (1980) Effect of growth rate on the production of phytohormone-like substances by an Arthrobacter sp. in chemostat culture. J Gen Microbiol 118:549–552

    CAS  Google Scholar 

  • Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183–190

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Coronelli C, Pagani H, Bardone MR, Lancini GC (1974) Purpuromycin, a new antibiotic isolated from Actinoplanes ianthinogenes N. sp. J Antibiot 27:161–168

    Article  CAS  Google Scholar 

  • Coronelli C, White RJ, Lancini GC, Parenti F (1975) Lipiarmycin, a new antibiotic from Actinoplanes. II. Isolation, chemical, biological and biochemical characterization. J Antibiot 28:253–259

    Article  CAS  Google Scholar 

  • Correll DL (1998) The role of phosphorous in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–189

    Chapter  Google Scholar 

  • D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighbouring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dart PJ, Wani SP (1982) Non-symbiotic nitrogen fixation and soil fertility. In: Transactions of the 12th international congress of soil science, 8–16 Feb 1982, New Delhi, India

    Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  CAS  PubMed  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux JP, Hofte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    Article  PubMed  Google Scholar 

  • Deepika TL, Kannabiran K, Gopiesh Khanna V, Rajakumar G, Jayaseelan C, Santhoshkumar T, Abdul Rahuman A (2011) Isolation and characterization of acaricidal and larvicidal novel compound (2S,5R,6R)-2-hydroxy-3,5,6-trimethyloctan-4-one from Streptomyces sp. against blood-sucking parasites. Parasitol Res 111(3):1151–1163

    Article  PubMed  Google Scholar 

  • Dey R, Pal KK, Tilak KVBR (2014) Plant growth-promoting rhizobacteria in crop protection and challenges. In: Goyal A, Manoharachary C (eds) Future challenges in crop protection against fungal pathogens. Springer, New York, pp 31–58

    Google Scholar 

  • El-Bendary MA, Rifaat HM, Keera AA (2010) Larvicidal activity of extracellular secondary metabolites of Streptomyces microflavus against Culex pipiens. Can J Pure App Sci 4:1021–1026

    CAS  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Article  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth-promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol 76:4969–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MA, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)–managing systems at risk. Food and Agriculture Organization of the United Nations/Earthscan, Rome//London

    Google Scholar 

  • Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Press, Madison

    Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Chouaia B, Jaouani A, Daffonchio D, Boudabous A, Gtari M (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifca: 15pp. 963401. https://doi.org/10.6064/2012/963401

  • Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidhya MS, Deepthi K, Rupela O (2011a) Evaluation of bacteria isolated from rice rhizosphere for biological control of sorghum caused by M. phaseolina. World J Microbiol Biotechnol 27(6):1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011b) Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Upadhyaya HD, Vadlamudi S, Humayun P, Vidya MS, Alekhya G, Singh A, Vijayabharathi R, Bhimineni RK, Seema M, Rathore A, Rupela O (2012) Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. SpringerPlus 1:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Apparla S, Bandikinda P, Vijayabharathi R, Bhimineni RK, Rupela O (2013) Evaluation of Streptomyces spp. for their plant growth- promotion traits in rice. Can J Microbiol 59:534–539

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Sathya A, Vijayabharathi R, Alekhya G, Vidya MS, Rajyalakshmi K (2014a) Agriculturally important microbial germplasm database, Information bulletin no:95. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 1–72

    Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Om R, Kudapa H, Katta K, Varshney RK (2014b) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R (2015) Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech 5:653–661

    Article  PubMed  Google Scholar 

  • Gopalakrishnan S, Vijayabharathi R, Sathya A, Sharma HC, Srinivas V, Bhimineni RK, Gonzalez SV, Melø TM, Simic N (2016a) Insecticidal activity of a novel fatty acid amide derivative from Streptomyces species against Helicoverpa armigera. Natl Prod Res 30:2760–2769

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Srinivas V (2016b) Formulations of plant growth-promoting microbes for field applications. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 239–251

    Chapter  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Saxena RK, Chaturvedi P, Virdi VS (1995) Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J Appl Bacteriol 78:378–383

    Article  CAS  PubMed  Google Scholar 

  • Guthrie FB (1896) Inoculation of soil for leguminous crops. Agric Gaz NSW7:690–694

    Google Scholar 

  • Hamdali H, Moursalou K, Tchangbedji G, Ouhdouch Y, Hafidi M (2012) Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr J Biotechnol 11:312–320

    CAS  Google Scholar 

  • Hameeda B, Rupela OP, Wani SP, Reddy G (2006) Indices to assess quality, productivity and sustainable health of soils receiving low cost biological and/or conventional inputs. Int J Soil Sci 1(3):196–206

    Article  CAS  Google Scholar 

  • He H, Ding WD, Bernan VS, Richardson AD, Ireland CM, Greenstein M, Ellestad GA, Carter GT (2001) Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis. J Am Chem Soc 123:5362–5363

    Article  CAS  PubMed  Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320

    Article  CAS  Google Scholar 

  • Htwe AZ, Yamakawa T, Sarr PS, Sakata T (2015) Diversity and distribution of soybean-nodulating bradyrhizobia isolated from major soybean-growing regions in Myanmar. Afr J Microbiol Res 9:2183–2196

    Article  Google Scholar 

  • IFPRI (2012) Global food policy report. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Igarashi Y, Takagi K, Kajiura T, Furumai T, Oki T (1998) Glucosylquestiomycin, a novel antibiotic from Microbispora sp. TP-A0184 fermentation, isolation, structure determination, synthesis and biological activities. J Antibiot 51:915–920

    Article  CAS  Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  • Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF (2015) Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant-Microbe Interact 28(12):1338–1352

    Article  CAS  PubMed  Google Scholar 

  • Jo LL, Ensio OJ, Carol MD, Carol MD, Rito JD, Ann BN, Gail MP (2003) Streptomyces galbus strain with insecticidal activity and method of using as an insecticide. European patent EP1272611

    Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth-promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilisation and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9(5):e1003332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo GJ (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Joshi MV, Loria R (2007) Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol Plant Microbe Interact 20:751–758

    Article  CAS  PubMed  Google Scholar 

  • Kandeler E, Stemmer M, Gerzabek MH (2005) Role of microorganisms in carbon cycling in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin/Heidelberg, pp 139–157

    Chapter  Google Scholar 

  • Karthik L, Gaurav K, BhaskaraRao KV, Rajakumar G, Abdul Rahuman A (2011) Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitol Res 108:1447–1455

    Article  CAS  PubMed  Google Scholar 

  • Katznelson H, Cole SE (1965) Production of gibberellin like substances by bacteria and actinomycetes. Can J Microbiol 11:733–741

    Article  CAS  PubMed  Google Scholar 

  • Kaunat H (1969) Bidung von indolderivatendurchrhizosphareenspezifisch Bakterien und Aktinomyzeten. Zentralblatt fuer Bakeriologie Abteilung II 123:501–515

    CAS  Google Scholar 

  • Kawamura N, Sawa R, Takahashi Y, Issiki K, Sawa T, Kinoshita N, Naganawa H, Hamada M, Takeuchi T (1995) Pyralomicins, new antibiotics from Actinomadura spiralis. J Antibiot 48:435–437

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eur Asia J Bio Sci 4:23–32

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Vegetale et de Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kondo S, Yasui K, Katayama M, Marumo S, Kondo T, Hattori H (1987) Structure of pamamycin-607, an aerial mycelium-inducing substance of Streptomyces alboniger. Tetrahedron Lett 28:5861–5864

    Article  CAS  Google Scholar 

  • Lam YKT, Williams DL, Sigmund JM, Sanchez M, Genilloud O, Kong YL, Stevens-Miles S, Huang L, Garrity GM (1992) Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a Microbispora sp. I. Production, isolation, and characterization. J Antibiot 45:1709–1716

    Article  CAS  Google Scholar 

  • Lewer P, Chapin EL, Graupner PR, Gilbert JR, Peacock C (2003) Tartrolone C: a novel insecticidal macrodiolide produced by Streptomyces sp. CP1130. J Nat Prod 66:143–145

    Article  CAS  PubMed  Google Scholar 

  • Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, Edwards PMR, Graupne PR (2009) Discovery of the butenyl-spinosyn insecticides: novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorg Med Chem 17:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Li W, Leet JE, Ax HA, Gustavson DR, Brown DM, Turner L, Brown K, Clark J, Yang H, Fung-Tomc J, Lam KS (2003) Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. I. Taxonomy, fermentation and biological activities. J Antibiot 56:226–231

    Article  CAS  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Article  CAS  PubMed  Google Scholar 

  • Lindström K, Lipsanen P, Kaijalainen S (1990) Stability of markers used for identification of two Rhizobium galegae inoculant strains after five years in the field. Appl Environ Microbiol 56:444–450

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Qin S, Wang Y, Li W, Zhang J (2008) Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J Microbiol Biotechnol 24:2243–2248

    Article  CAS  Google Scholar 

  • Loliam B, Morinaga T, Chaiyanan S (2013) Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4. Sci Asia 39:584–590

    Article  Google Scholar 

  • Macagnan D, Romeiro RS, Pomella AWV, deSouza JT (2008) Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol Control 47:309–314

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Saravanan VS, Santhanakrishnan P (2010a) Microbacterium azadirachtae sp. nov., a plant growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 60:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC, Sundaram S (2010b) Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 60:1322–1327

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzym Microb Technol 20:489–493

    Article  CAS  Google Scholar 

  • Maheshwari DK (2012) Bacteria in agrobiology: plant probiotics. Springer

    Google Scholar 

  • Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H (2003) Chandrananimycins AC: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot 56:622–629

    Article  CAS  Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merckx R, Dijkra A, Hartog AD, Veen JAV (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol Fertil Soils 5:126–132

    Article  Google Scholar 

  • Mishra AC, Pandey VK, Rai VP (2014) Effectiveness of fertilizer doses, liming and Rhizobium inoculation in vegetable pea under acidic soil of Jharkhand. Asian J Hortic 9:140–142

    Article  Google Scholar 

  • Nakamura G, Kobayashi K, Sakurai T, Sono K (1981) Cationomycin, a new polyether ionophore antibiotic produced by Actinomadura nov. sp. J Antibiot 34:1513–1514

    Article  CAS  Google Scholar 

  • Nambiar PT, Rego TJ, Rao BS (1986) Comparison of the requirements and utilization of nitrogen by genotypes of sorghum (Sorghum bicolor (L.) Moench), and nodulating and non-nodulating groundnut (Arachis hypogaea L.). Field Crops Res 15(2):165–179

    Article  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 6:e99168

    Article  CAS  Google Scholar 

  • Nigam SN, Dwivedi SL, Nambiar PTC, Gibbons RW, Dart PJ (1985) Combining ability analysis of N2-fixation and related traits in peanut. Peanut Sci 12:55–57

    Article  Google Scholar 

  • Ohtake H, Wu H, Imazu K, Ambe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Resour Conserv Recycl 18:125–134

    Article  Google Scholar 

  • Omura S, Imamura N, Oiwa R, Kuga H, Iwata R, Masuma R, Iwai Y (1986) Clostomicins, new antibiotics produced by Micromonospora echinospora subsp. armeniaca subsp. nov. I Production, isolation, and physico-chemical and biological properties. J Antibiot 39:1407–1412

    Article  CAS  Google Scholar 

  • Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T (2001) Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in Streptomycetes. I. Purification and characterization. J Antibiot 54:1036–1044

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth-promotion. Appl Microbiol Biotechnol 97:9621–9636

    Article  CAS  PubMed  Google Scholar 

  • Parenti F, Beretta G, Berti M, Arioli V (1978) Teichomycins, new antibiotics from Actinoplanes eichomyceticus Nov. Sp. I. Description of the producer strain, fermentation studies and biological properties. J Antibiot 1:276–283

    Article  Google Scholar 

  • Patel M, Horan AC, Gullo VP, Loebenberg D, Marquez JA, Miller GH, Waitz JA (1984) Oxanthromicin, a novel antibiotic from Actinomadura. J Antibiot 37:413–415

    Article  CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedesaegypti and Anopheles stephensi. Parasitol Res 109:1179–1187

    Article  PubMed  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic romiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertry I, Vaclavikova K, Depuydt S, Galuszka P, Spichal L, Temmerman W, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. PNAS 106:929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podile AP, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Reeve W, Ardley J, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P, Seshadri R, Ivanova NN, Kyrpides NC (2015) A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 10:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimann H, Cooper DJ, Mallams AK, Jaret RS, Yehaskel A, Kugelman M, Vernay HF, Schumacher D (1974) Structure of sisomicin, a novel unsaturated aminocyclitol antibiotic from Micromonospora inyoensis. J Org Chem 39:1451–1457

    Article  CAS  PubMed  Google Scholar 

  • Ruanpanun P, Laatsch H, Tangchitsomkid N, Lumyong S (2011) Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J Microbiol Biotechnol 27:1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Rupela OP (1992) Natural occurrence and salient characters of non-nodulating chickpea plants. Crop Sci 32:349–352

    Article  Google Scholar 

  • Rupela OP (1997) Nitrogen fixation research through cooperation and future research needs. In: Extending nitrogen fixation research to farmers’ fields: proceedings of an International Workshop on Managing Legume Nitrogen Fixation in the Cropping Systems of Asia, 20–24 Aug 1996, pp 9–14

    Google Scholar 

  • Rupela OP, Johansen C (1995) Identification of non-nodulating and low and high nodulating plants in pigeonpea. Soil Biol Biochem 27:539–544

    Article  CAS  Google Scholar 

  • Rupela OP, Toomsan B, Mittal S, Dart PJ, Thompson JA (1987) Chickpea Rhizobium populations: survey of influence of season, soil depth and cropping pattern. Soil Biol Biochem 19:247–252

    Article  Google Scholar 

  • Rupela OP, Rao JVDK, Sudarshana MR, Kiran MU, Anjaiah V (1991) Rhizobium germplasm resources at ICRISAT Center. Research bulletin no.15

    Google Scholar 

  • Rupela OP, Wani SP, Danso SKA, Johansen C (1995) Effect of high nodulating selection of chickpea cultivar ICC 4948 on yield and soil properties of a chickpea-sorghum cropping system. J Soil Biol Ecol 15:127–134

    Google Scholar 

  • Rupela OP, Rangarao GV, Rahman SJ, Wani SP, Gowda CLL (2005) Promoting biopesticides for crop protection though partnerships–an on-going drive. Presented at the Workshop on “Promotion of biopesticides and biofertilizers in agriculture”, 20–22 Sep 2005, Hyderabad, India

    Google Scholar 

  • Sanginga N, Danso SKA, Mulongoy K, Ojeifo AA (1994) Persistence and recovery of introduced Rhizobium 10 years after inoculation on Leucaena leucocephala grown on an Alfisol in Southwestern Nigeria. Plant Soil 159:199–204

    Article  Google Scholar 

  • Sang-Mo K, Abdul Latif K, Young-Hyun Y, Muhammad K (2014) Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J Microbiol Biotechnol 24:106–112

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Kumari BR, Srinivas V, Sharma HC, Sathyadevi P, Gopalakrishnan S (2016a) Assessment of a diketopiperazine, cyclo(Trp-Phe) from Streptomyces griseoplanus SAI-25 against cotton bollworm, Helicoverpa armigera. App Entomol Zool 51:11–20

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2016b) Soil microbes: the invisible managers of soil fertility. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 1–16

    Google Scholar 

  • Saurav K, Rajakumar G, Kannabiran K, Abdul Rahuman A, Velayutham K, Elango G, Kamaraj C, AbduzZahir A (2011) Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol Res 112(1):215–226

    Article  PubMed  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem FV, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342:179–186

    Article  CAS  PubMed  Google Scholar 

  • Shekhar N, Bhattacharya D, Kumar D, Gupta RK (2006) Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL2. Can J Microbiol 52:805–808

    Article  CAS  PubMed  Google Scholar 

  • Shih HD, Liu YC, Hsu FL, Mulabagal V, Dodda R, Huang JW (2003) Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agric Food Chem 51:95–99

    Article  CAS  PubMed  Google Scholar 

  • Shockman G, Waksman SA (1951) Rhodomycin-an antibiotic produced by a red-pigmented mutant of Streptomyces griseus. Antibiot Chemother 1:68–75

    CAS  Google Scholar 

  • Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 56(1):14–25

    Article  CAS  PubMed  Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alphaglycerphosphate. Arch Biochem Biophys 349:27–35

    Article  Google Scholar 

  • Smyth E (2011) Selection and analysis of bacteria on the basis of their ability to promote plant development and growth. PhD thesis, University College Dublin, Ireland

    Google Scholar 

  • Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26:917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontag B, Gerlitz M, Paululat T, Rasser HF, Grun-Wollny I, Hansske FG (2006) Oxachelin, a novel iron chelator and antifungal agent from Streptomyces sp. GW9/1258. J Antibiot 59:659–663

    Article  CAS  Google Scholar 

  • Stevens G, Berry AM (1988) Cytokinin secretion by Frankia sp. HFP ArI3 in defined medium. Plant Physiol 87:15–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2014) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332

    Article  CAS  Google Scholar 

  • Sun Y, Zhou X, Liu J, Bao K, Zhang G, Tu G, Kieser T, Deng Z (2002) Streptomyces nanchangensis, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148:361–371

    Article  CAS  PubMed  Google Scholar 

  • Sun CH, Wang Y, Wang Z, Zhou JQ, Jin WZ, You HG, Zhao LX, Si SY, Li X (2007) Chemomicin A: a new angucyclinone antibiotic produced by Nocardia mediterranei subsp. kanglensis 1747–64. J Antibiot 60:211–215

    Article  CAS  Google Scholar 

  • Swarnalakshmi K, Senthilkumar M, Ramakrishnan B (2016) Endophytic actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. In: Gopalakrishnan S, Sathya A, Vijayabharathi R (eds) Plant growth promoting actinobacteria. Springer, Singapore, pp 123–145

    Chapter  Google Scholar 

  • Thamdrup B (2012) New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst 43:407–428

    Article  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tokala RK, Janice LS, Carina MJ, Don LC, Michelle HS, Lee AD, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo-Estrada SR, Sepulveda I, Crawford DL (1998) In vitro and in vivo antagonism of Streptomyces violaceusnigerYCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol 14:865–872

    Article  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Chang Biol 12:141–153

    Article  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth-stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Omura S (2005) New insecticidal antibiotics, hydroxyfungerins A and B, produced by Metarhizium sp. FKI-1079. J Antibiot 58:4–9

    Article  Google Scholar 

  • Unno Y, Shinano T, Minamisawa K, Ikeda S (2015) Bacterial community shifts associated with high abundance of Rhizobium spp. in potato roots under macronutrient-deficient conditions. Soil Biol Biochem 80:232–236

    Article  CAS  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  • Vaccari DA, Strom PF, Alleman JE (2006) Environmental biology for engineers and scientists. Wiley, New York, pp 1–931

    Google Scholar 

  • Valanarasu M, Kannan P, Ezhilvendan S, Ganesan G, Ignacimuthu S, Agastian P (2010) Antifungal and antifeedant activities of extracellular product of Streptomyces sp. ERI-04 isolated from Western Ghats of Tamil Nadu. J Mycol Med 20:290–297

    Article  Google Scholar 

  • Vance CP, Ehde-Stone C, Allan DL (2003) Phosphorous acquisition and use: critical adaptations by plants for screening a renewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth-promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Vertesy L, Ehlers E, Kogler H, Kurz M, Meiwes J, Seibert G, Vogel M, Hammann P (2000) Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization. J Antibiot 53:816–827

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vijayabharathi R, RatnaKumari B, Sathya A, Srinivas V, Rathore A, Sharma HC, Gopalakrishnan S (2014a) Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Can J Plant Sci 94(4):759–769

    Article  Google Scholar 

  • Vijayabharathi R, Kumari BR, Gopalakrishnan S (2014b) Microbial agents against Helicoverpa armigera: where are we and where do we need to go? Afri J Biotech 13:1835–1844

    Article  Google Scholar 

  • Vijayabharathi R, Sathya A, Gopalakrishnan S (2016) A renaissance in plant growth-promoting and biocontrol agents by Endophytes. In: Microbial Inoculants in sustainable agricultural productivity: research perspectives. Springer India, India, pp 37–60

    Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Article  Google Scholar 

  • Wang XY, Zhang J, Liu CX, Gong DL, Zhang H, Wang JD, Yan YJ, Xiang WS (2011a) A novel macrocyclic lactone with insecticidal bioactivity from Streptomyces microflavus neau 3. Bioorg Med Chem Lett 21:5145–5148

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Zhang J, Wang JD, Huang SX, Chen YH, Liu CX, Xiang WS (2011b) Four new doramectin congeners with acaricidal and insecticidal activity from Streptomyces avermitilis NEAU1069. Chem Biodivers 8:2117–2125

    Article  CAS  PubMed  Google Scholar 

  • Wani SP (1986) Research on cereal nitrogen fixation at ICRISAT. In: Cereal nitrogen fixation. In: Proceedings of the working group meeting, 9–12 Oct 1984, ICRISAT Center, Patancheru, India

    Google Scholar 

  • Wani SP, Rego TJ, Kumar Rao JVDK (1994) Contribution of legumes in cropping systems: along-term perspective. In: Linking biological nitrogen fixation research in Asia: report of a meeting of the Asia working group on biological nitrogen fixation in legumes, 6–8 Dec 1993, pp 84–90

    Google Scholar 

  • Wani SP, Rupela OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant Soil 174:29–49

    Article  CAS  Google Scholar 

  • Weinstein MJ, Luedemann GM, Oden EM, Wagman GH (1964) Everninomicin, a new antibiotic complex from Micromonospora carbonacea. Antimicrob Agents Chemother 10:24–32

    CAS  PubMed  Google Scholar 

  • Wheeler CT, Crozier A, Sandberg G (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78:99–104

    Article  CAS  Google Scholar 

  • Wilson PW, Burris RH (1947) The mechanism of biological nitrogen fixation. Bacteriol Rev 11(1):41–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao-ming PX, Bi-run L, Mei-ying HU, Hui-fang S (2008) Insecticidal constituent of Streptomyces sp. 4138 and the bioactivity against Spodoptera exigua. Chinese J Biological Control. doi:CNKI:SUN:ZSWF.0.2008-02-014

    Google Scholar 

  • Xiong L, Li J, Kong F (2004) Streptomyces sp. 173, an insecticidal micro-organism from marine. Lett Appl Microbiol 38:32–37

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151:2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31(8):1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Zhi-qin JI, Ji-wen Z, Shao-peng W, Wen-jun W (2007) Isolation and identification of the insecticidal ingredients from the fermentation broth of Streptomyces qinlingensis. Nongyaoxue Xuebao 9(1):25–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas P. Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, S.P., Gopalakrishnan, S. (2019). Plant Growth-Promoting Microbes for Sustainable Agriculture. In: Sayyed, R., Reddy, M., Antonius, S. (eds) Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-6790-8_2

Download citation

Publish with us

Policies and ethics