Skip to main content

Zinc-Solubilizing Bacteria: A Boon for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

The continuous rise in world population requires more food to feed people. To fulfill this demand, farmers apply different agrochemicals, especially fertilizers, in indiscriminate quantity in fields to increase production per unit time per unit area. Blind and imbalanced doses of fertilizers cause various adverse effects on environmental conditions through the accumulation of various minerals and biomagnifications in different ecosystems. Generally, all macroelements are applied through high-analysis fertilizers. But micronutrients are neglected, not directly involved in yield expansion, and zinc (Zn) is one of them. Zinc (Zn) is a key micronutrient, required for all living forms including plants, humans, and microorganisms for their development. Humans and other living organisms require zinc in their lives in little amounts for proper physiological functions. Zinc is a crucial micronutrient for plants which plays various important functions in their life cycle. The deficiency of zinc in the soil is one of the very common micronutrient deficiencies and results in decreased crop production. Majority of the agricultural soil is either zinc deficient or contains zinc in a fixed form which is unavailable to plants, as a result reflecting zinc deficiency in plants and soils. Therefore, to solve the above problem, there is a requirement for alternative and eco-friendly technology such as plant growth-promoting rhizobacteria (PGPR) and organic farming practices to enhance zinc solubilization and its availability to plants. Zinc-solubilizing bacteria (Zn-SB) are promising bacteria to use for sustainable agriculture. Zn-SB have various plant growth-promoting (PGP) properties such as Zn solubilization, P solubilization, K solubilization, nitrogen fixation, and production of phytohormones like kinetin, indole-3-acetic acid (IAA), and gibberellic acid, besides production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophores, hydrogen cyanide, and ammonia. Zn-SB secrete different organic acids that solubilize the fixed form of zinc to available form, which enhances plant growth promotion, yield, and fertility status of the soil. This chapter covers the efficient application of Zn-SB, the Zn solubilization mechanism, and their application to increase crop production. The indigenous Zn-SB have proved their effectiveness over exogenous ones in the various cropping systems or crop rotations for which they are intended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaid-Ullah M, Hassan MN, Nawaz MK, Hafeez FY (2011) Biofortification of wheat (Triticum aestivum L.) through Zn mobilizing PGPR. Proceedings of international science conference “prospects and challenges to sustainable agriculture”. Azad Jammu and Kashmir University, Pakistan, pp 298

    Google Scholar 

  • Abaid-Ullah HS, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-moussa L (2016) Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize (Zea mays L). Hindawi Publishing Corporation Biotechnol Res Int:11

    Google Scholar 

  • Ahmad M (2007) Biochemical and molecular basis of phosphate and zinc mobilization by PGPR in rice. M. Phil Dissertation, NIBGE, Faisalabad

    Google Scholar 

  • Ahmad P, Wani AE, Saghir MD, Khan AE, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62:1321–1330

    Article  CAS  Google Scholar 

  • Akhtar A, Hisamuddin, Robab MI, Abbasi SR (2012) Plant growth promoting Rhizobacteria: an overview. J Nat Prod Plant Resour 2(1):19–31

    Google Scholar 

  • Alexander M (1997) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and plant nutrition. International zinc association (IZA) and IFA Brussels, Belgium and Paris, pp 139

    Google Scholar 

  • Bahrani A, Pourreza J, Joo MH (2010) Response of winter wheat to co-inoculation with Azotobacter and arbuscular mycorrhizal fungi (amf) under different sources of nitrogen fertilizer. Amer-Eur J Sustain Agric 8:95–103

    CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    Article  PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  CAS  PubMed  Google Scholar 

  • Bulut S (2013) Evaluation of yield and quality parameters of phosphorous solubilizing and N-fixing bacteria inoculated in wheat (Triticum aestivum L.). Turk J Agric For 37:545–554

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Chang HB, Lin CW, Huang HJ (2005) Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266

    Article  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Crane FL, Sun IL, Clark MG (1985) Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta 811(3):233–264

    Article  CAS  PubMed  Google Scholar 

  • Deepak J, Geeta N, Sachin V, Anita S (2013) Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. Int J Agric Environ Biotechnol 6:363–370

    Article  Google Scholar 

  • Desai S, Praveen Kumar G, Sultana U (2012) Potential microbial candidate strains for management of nutrient requirements of crops. Afr J Microbiol Res 6(17):3924–3931

    CAS  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from forest soil. Biol Ferti Soils 28(1):87–94

    Article  Google Scholar 

  • FAO WHO (2002) Human vitamin and mineral requirements. Food and Agriculture Organization of the United Nations, Bangkok, Thailand. ISBN 1014–9228

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Friedland AJ (1990) The movement of metals through soils and ecosystems. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 7–19

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Res 111:3–49

    Article  CAS  Google Scholar 

  • Giehl RFH, Meda AR, Wiren N (2009) Moving up, down, and everywhere: signaling of micronutrients in plants. Curr Opin Plant Biol 12:320–327

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick B (2012) Plant growth-promoting Bacteria: mechanisms and applications. Hindawi Publishing Corporation, New York

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL (2014) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5(4):355–377

    Google Scholar 

  • Goteti PK, Daniel L, Emmanuel A, Desai S, Hassan M (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L .). Int J Microbiol 2013:1

    Article  CAS  Google Scholar 

  • Gull M, Hafeez FY, Saleem M, Malik KA (2004) Phosphate-uptake and growth promotion of chickpea (Cicer arietinum L.) by co-inoculation of mineral phosphate solubilizing bacteria and mixed rhizobial culture. Aust J Exp Agric 44(6):623–628

    Article  CAS  Google Scholar 

  • Gupta AP (2005) Micronutrient status and fertilizer use scenario in India. J Trace Elem Med Biol 18:325–331

    Article  CAS  PubMed  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  PubMed  Google Scholar 

  • Hafeez FY, Hameed S, Ahmad T, Malik KA (2001) Competition between effective and less effective strains of Bradyrhizobium spp. for nodulation on Vigna radiata. Biol Fertil Soils 33:382–386

    Article  Google Scholar 

  • Hafeez FY, Naeem FI, Naeem R, Zaidi AH, Malik KA (2005) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ Exp Bot 54:142–147

    Article  CAS  Google Scholar 

  • Hafeez FY, Abaid-Ullah M, Hassan MN (2013) Plant growth-promoting Rhizobacteria as zinc mobilizers: a promising approach for cereals biofortification. In: Bacteria in agrobiology: crop productivity, pp 217–235

    Chapter  Google Scholar 

  • Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105

    Article  CAS  PubMed  Google Scholar 

  • Hamid A, Ahmad N (2001) Paper at a regional workshop on integrated plant nutrition system (IPNS): development and rural poverty alleviation, Bangkok, pp 18–21

    Google Scholar 

  • HarvestPlus (2012) Breeding crops for better nutrition. Web page of HarvestPlus. International Food Policy Research Institute, Washington, DC. http://www.harvestplus.org/content/zinc-wheat

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers. Pearson, Upper Saddle River, p 515

    Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • Hirschi K (2008) Nutritional improvements in plants: time to bite on biofortified foods. Trends Plant Sci 13(9):459–463

    Article  CAS  PubMed  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S91–S204

    Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth—the hard (and soft) facts. J Gen Microbiol 137(4):725–734

    Article  CAS  Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing the growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  • International Zinc Association IZA (2011). http://www.zinc.org/sustainability

  • Iqbal U, Jamil N, Ali I, Hasnain S (2010) Effect of zinc-phosphate-solubilizing bacterial isolates on the growth of Vigna radiata. Ann Microbiol 60:243. https://doi.org/10.1007/s13213-010-0033-4

    Article  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104(1):285–293

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root-derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Joy EJM, Ahmad W, Zia MH, Kumssa DB, Young SD, Anders EL (2017) Valuing increased zinc (Zn) fertilizer-use in Pakistan. Plant Soil 411:139

    Article  CAS  PubMed  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauser MA, Hussain F, Ali S, Iqbal MM (2001) Zinc and Cu nutrition of two wheat varieties on calcareous soil. Pak J Soil Sci 20:21–26

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Gurmani AR, Khan MS, Gurmani AH (2009) Residual, the direct and cumulative effect of zinc application on wheat and rice yield under the rice-wheat system. Soil Environ 28:24–28

    CAS  Google Scholar 

  • Khande R, Sushil KS, Ramesh A, Mahaveer PS (2017) Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–138

    Article  Google Scholar 

  • King JC (2006) Zinc. In: Shils ME, Shike M (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams & Wilkins, Philadelphia, pp 271–285

    Google Scholar 

  • Kloepper JW, Okon Y (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118

    Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through the soil and foliar applications of nitrogen. Cereal Chem 87(1):1–9

    Article  CAS  Google Scholar 

  • Lonnerdal IB (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378–1387

    Article  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010a) Bio-fertilizers in organic agriculture. J Phytopathol 2(10):42–54

    Google Scholar 

  • Mahdi SS, Dar SA, Ahmad S, Hassan GI (2010b) Zinc availability – a major issue in agriculture. Res J Agric Sci 3(3):78–79

    Google Scholar 

  • Maheshwari DK, Kumar S, Maheshwari NK, Patel D, Saraf M (2012) Nutrient availability and management in the rhizosphere by microorganisms. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 301–326

    Chapter  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12:87–132

    Article  CAS  PubMed  Google Scholar 

  • Naz I, Ahmad H, Khokhar SN, Khan K, Shah AH (2016) Impact of zinc solubilizing bacteria on zinc contents of wheat. Am Euras J Agric Environ Sci 16:449–454

    CAS  Google Scholar 

  • Oliveira AB, Nascimento CWA (2006) Formas de manganeˆs e ferro em solos de refereˆncia de Pernambuco. Rev Bras Cieˆnc Solo 30(1):99–110

    Article  Google Scholar 

  • Pahlvan-Rad MR, Pressaraki M (2009) Response of wheat plant to zinc, iron and manganese applications and uptake and concentration of zinc, iron, and manganese in wheat grains. Commun Soil Sci Plant Anal 40:1322–1332

    Article  CAS  Google Scholar 

  • Pawar A, Ismail S, Mundhe S, Patil VD (2015) Solubilization of insoluble zinc compounds by different microbial isolates in vitro condition. Int J Trop Agric 33:865–869

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Harvest plus: breeding crops for better nutrition. Crop Sci 47:88–105

    Article  Google Scholar 

  • Prasad R (2005) Rice-wheat cropping system. Adv Agron 86:255–339

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization, and biofortification of zinc in soybean and wheat cultivated in Vertisols of Central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Saeed A (2007) Perspective of plant growth promoting rhizobacteria ( PGPR ) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Khandelwal A, Sawhney R, Maheshwari DK (1994) Effects of carbaryl and 2,4-D on growth, nitrogenase and uptake hydrogenase activity in agar culture and root nodules formed by Bradyrhizobium japonicum. Microbiol Res 149:401–406

    Article  CAS  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 35(1–2):121–125

    Article  CAS  Google Scholar 

  • Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root-knot nematode Meloidogyne incognita. Lett Appl Microbiol 44(3):235–241

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007a) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Osborne J, Madhaiyan M, Mathew L, Chung J, Ahn K, Sa T (2007b) Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells. J Microbiol Biotechnol 17(9):1477–1482

    CAS  PubMed  Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Chapter  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 38(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Akhtar MS, Futai K (2008) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht

    Book  Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils. A global study, FAO soil bulletin no. 48. FAO, Rome

    Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Tariq SR, Ashraf A (2016) Comparative evaluation of phytoremediation of the metal contaminated soil of firing range by four different plant species. Arab J Chem 9(6):806–814

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root-associated bacteria for zinc mobilization in rice. Pak J Bot 39(1):245–253

    Google Scholar 

  • Upadhyay A, Srivastava S (2014) Mechanism of zinc resistance in plant growth promoting Pseudomonas fluorescens strain. World J Microbiol Biotechnol 30(8):2273–2282

    Article  CAS  PubMed  Google Scholar 

  • Usha Rani M, Reddy G (2012) Screening of rhizobacteria containing plant growth promoting (PGPR) traits in rhizosphere soils and their role in enhancing the growth of pigeon pea. Afr J Biotechnol 11(32):8085–8091

    Article  CAS  Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889–910

    Google Scholar 

  • Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Indus Microbiol 14(2):169–177

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Impact of zinc tolerant plant growth promoting rhizobacteria on lentil grown in zinc amended soil. Agron Sustain Dev 28:449–455

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in humane diets: iron zinc copper calcium magnesium selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 80:1–11

    Google Scholar 

  • Yao T, Yasmin S, Malik KA, Hafeez FY (2008) Potential role of Rhizobacteria isolated from North-Western China for enhancing wheat and oat yield. J Agric Sci 146:49–56

    Article  CAS  Google Scholar 

  • Yasmin S (2011) Characterization of growth promoting and antagonistic bacteria associated with rhizosphere of cotton and rice. NIBGE, Faisalabad

    Google Scholar 

  • Zaidi A, Mohammad S (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Agric Sci 30:223–230

    CAS  Google Scholar 

  • Zhang YQ, Sun YX, Ye YL, Karim MR, Xue YF, Yan P, Meng QF, Cui ZL, Cakmak I, Zhang FS (2012) Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Res 125:1–7

    Article  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Lu X, Chen Z, Tian X, Yang X (2011) Zinc fertilization methods on zinc absorption and translocation in wheat. J Agric Sci 3:28–35

    Google Scholar 

  • Zou C, Zhang Y, Rashid A, Ram H, Savasli E, Arisoy R, Ortiz-Monasterio I, Simunji S, Wang Z, Sohu V (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Dewangan, S., Lawate, P., Bahadur, I., Prajapati, S. (2019). Zinc-Solubilizing Bacteria: A Boon for Sustainable Agriculture. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_8

Download citation

Publish with us

Policies and ethics