Skip to main content

Abstract

Tropical regions are known for their rich diversity of fruit crops with different tree species and their wild relatives. The importance of fruit tree species is increasing day by day due to its contribution to food and nutrition, ecosystem and environment sustainability and empowerment of poor and their livelihoods. The conservation of the genetic resources of fruit tree species in their centres of origin and genetic diversity is not only for its effective utilization but also to maintain its evolution potential. However, the regions rich in fruit genetic diversity are threatened by loss of habitat, urbanization, industrialization and changes in agricultural practices. Domestication and spread of these tree species helps to broaden the secondary or tertiary gene pool and evolution of genes adapting to the newer agro-ecological conditions and biotic/abiotic stresses. Nevertheless, the limited utilization of the diversity creates an urgent need for exploration and conservation. Adopting traditional methods along with complementary approaches will provide a sustainable and evolution friendly conservation of genetic resources. Utilization of these genetic resources, directly or indirectly (including in breeding programme) will improve the economic and social status of several communities; this will in turn contribute to the national social, cultural and economic betterment.

With this general background, we focus in this chapter on a few tree fruit crops which were introduced a few hundred years ago, which had a chance to evolve and adopt to new agroclimatic conditions in the country, such as papaya, pomegranate, grapes, pineapple and sapota. These tree crops are well acclimatized to this region and have become an integral part of the social, cultural, and economic life of the local people. The utilization of these fruit crops at the domesticated region increased tremendously and at times crossed the regions from where they originated. Thus, the conservation of these fruit crops at the secondary or tertiary gene pool helps to avoid the risk of genetic erosion and assist in the preservation of novel traits. In order to improve the available germplasm to meet the local needs, enrichment of germplasm is essential. The knowledge about the tree crop, its origin, diversity, distribution, taxonomy and botany will help the breeder to choose the appropriate parent and breeding strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alleweldt, G. (Ed.). (1990). Proceedings of the 5th International Symposium on Grape Breeding, 12–16 September 1989, St. Martin/Pfalz, FRG, Vitis, p. 29.

    Google Scholar 

  • Aradhya, M., Zee, F., & Manshardt, R. M. (1994). Isozyme variation in cultivated and wild pineapple. Euphytica, 79, 87–99.

    Article  CAS  Google Scholar 

  • Aradhya, M., Manshardt, R., Zee, F., & Morden, C. (1999). A phylogenetic analysis of the Carica sp. Caricaceae based on restriction fragment length variation in a cpDNA intergenic spacer region. Genetic Resources and Crop Evolution., 46, 579–586.

    Article  Google Scholar 

  • Arnold, C., Gillet, F., & Gobat, J. M. (1998). Situation de la vigne sauvage Vitis vinifera ssp. silvestris en Europe. Vitis, 37(4), 159–170.

    Google Scholar 

  • Arroyo-García, R., Ruiz-García, L., Bolling, L., Ocete, R., López, M. A., Arnold, C., Ergul, A., Söylemezoğlu, G., Uzun, H. I., Cabello, F., Ibáñez, J., Aradhya, M. K., Atanassov, A., Atanassov, I., Balint, S., Cenis, J. L., Costantini, L., Gorislavets, S., Grando, M. S., Klein, B. Y., Mcgovern, P. E., Merdinoglu, D., Pejic, I., Pelsy, F., Primikirios, N., Risovannaya, V., Roubelakis-Angelakis, K. A., Snoussi, H., Sotiri, P., Tamhankar, S., This, P., Troshin, L., Malpica, J. M., Lefort, F., & Martinez-Zapater, J. M. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15(12), 3707–3714. https://doi.org/10.1111/j.1365-294X.2006.03049.x.

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan, K., & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9, 208–218.

    Article  CAS  Google Scholar 

  • Ashmore, S. E., Azimi, M., & Drew, R. A. (2001). Cryopreservation trials in Carica papaya. Acta Horticulture, 560, 117–120.

    Article  CAS  Google Scholar 

  • Bacilieri, R. (2007). GrapeGen06–management and conservation of grapevine GR. Bioversity newsletter for Europe, 34, 16.

    Google Scholar 

  • Badillo, V. M. (2000). Carica L. vs Vasconcellea st. Hill (Caricaceae) con la rehabilitacion de este ultimo. Ernstia, 10, 74–79.

    Google Scholar 

  • Baker, K. F., & Collins, J. L. (1939). Notes on the distribution and ecology of Ananas and Pseudananas in South America. American Journal of Botany, 26(9), 697–702.

    Article  Google Scholar 

  • Bar-Ya’akov, I., Hatib, K., Abed el Hadi, F., & Holland, D. (2003). Pomegranate varieties in Israel: Past, and present (Vol. 57, pp. 125–129). Alon Hanotea.

    Google Scholar 

  • Bass, L. N. (1975). Seed storage of Carica papaya L. Horticultural Science, 10, 232.

    Google Scholar 

  • Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., Vezzulli, S., Zulini, L., Velasco, R., Stefanini, M., Gaspero, G.D. and Di Gaspero, G. (2015). Grapevine breeding programs in Italy. In: Grapevine breeding programs for the wine industry (pp. 135–157). Oxford: Woodhead Publishing.

    Google Scholar 

  • Bennet, M. D., & Leitch, I. J. (2005). Plant DNA c values database (release 4.0 October 2005).

    Google Scholar 

  • Bertoni, M. S. (1919). Contribution à l’étude botanique des plantes cultivées. I. Essai d’une monographie du genre Ananas. Ann Cient Paraguay (Ser II), 4, 250–322.

    Google Scholar 

  • Blanco. (1883). Flora de Filiphas (p. 877). Manilla: Candido Lpez.

    Google Scholar 

  • Brown, J. E., Bauman, J. M., Lawrie, J. F., Rocha, O. J., & Moore, R. C. (2012). The structure ofmorphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica, 44, 179–188.

    Article  Google Scholar 

  • Burkill, I. H. (1966). A dictionary of the economic products of the Malaya peninsula (2nd ed.). Kuala Lumpur: Malay Minister of Agriculture and Co Operatives.

    Google Scholar 

  • Champagnol, F. (1984). Elements de Physiologie de la Vigne et de Viticulture Generale. Montpellier: Imprimerie Dehan.

    Google Scholar 

  • Chan, L. K., & Teo, C. K. H. (2000). Micropropagation of Eksotika, a Malaysia papaya cultivar, and the field performance of the tissue culture derived clones. Acta Horticulturae, 575, 99–105.

    Google Scholar 

  • Châtaignier, C. (1995). La Transcaucasie au Neolithique et au Chalcolithique. British Archaeological Series, 624, 1–240.

    Google Scholar 

  • Chen, I., & Manchester, S. R. (2007). Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany, 94(9), 1534–1553.

    Article  PubMed  Google Scholar 

  • Cohen, T. (2011). Pomegranate helps fight heart disease, relieves stress and improves sex life–now it’s nature’s elixir of youth, claims study. Dailymail.co.uk. http://www.dailymail.co.uk/news/article-2060163/Pomegranate-prevents-heart-disease-improves-sex-life-elixir-youth.html

  • Collins, J. L. (1949). History, taxonomy and culture of the pineapple. Economic Botany, 3(4), 335–359.

    Article  Google Scholar 

  • Conner, P. J. (2010). A century of muscadine grape (Vitis rotundifolia Michx) breeding at the University of Georgia.

    Google Scholar 

  • Conover, R. A. (1964). Distortion ringspot, a severe virus disease of papaya in Florida. Proceedings of the Florida State Horticultural Society, 89, 229–231.

    Google Scholar 

  • Conti, E., Fischbach, A., & Sytsma, K. J. (1993). Tribal relationships in Onagraceae: Implications from rbcL sequence data. Annals of the Missouri Botanical Garden, 80(3), 672–685. https://doi.org/10.2307/2399853.

    Google Scholar 

  • Coppens d’Esckenbrugge, G., Leal, F., & Duval, M. F. (1997). Germplasm resources of pineapple. Horticultural Reviews, 21, 133–175.

    Google Scholar 

  • Currle, O., Bauer, O., Hofäcker, W., Schumann, F., & Frisch, W. (1983). Biology of grapevines. Neustadt: Meininger.

    Google Scholar 

  • da Silva, J. A. T., Rana, T. S., Narzary, D., Verma, N., Meshram, D. T., & Ranade, S. A. (2013). Pomegranate biology and biotechnology: A review. Scientia Horticulturae, 160, 85–107. https://doi.org/10.1016/j.scienta.2013.05.017.

    Article  CAS  Google Scholar 

  • DeWald, M. G., Moore, G. A., & Sherman, W. B. (1992). Isozymes in Ananas (pineapple): Genetics and usefulness in taxonomy. Journal of the American Society for Horticultural Science, 117, 491–496.

    Article  CAS  Google Scholar 

  • Dinesh, M. R., Rekha, A., Ravishankar, K. V., Praveen, K. S., & Santosh, L. C. (2007). Breaking the intergeneric crossing barrier in papaya using sucrose treatment. Scientia Horticulturae, 114(1), 33–36.

    Article  CAS  Google Scholar 

  • Drew, R. A., Magdalita, P. M., & O’Brien, C. M. (1997). Development of Carica interspecific hybrids. In International symposium on biotechnology of tropical and subtropical species Part 2 (Vol. 461, pp. 285–292).

    Google Scholar 

  • Drew, R. A., O’Brien, C. M., & Magdalita, P. M. (1998). Development of interspecific Carica hybrids. Acta Horticulturae, 461, 285–291. https://doi.org/10.1071/EA04247.

    Article  Google Scholar 

  • Drew, R. A., Siar, S. V., O’Brien, C. M., Magdalita, P. M., & Sajise, A. G. C. (2006). Breeding for papaya ringspot virus resistance in Carica papaya via hybridisation with Vasconcellea quercifolia. Australian Journal of Experimental Agriculture, 46(3), 413–418.

    Article  Google Scholar 

  • Du Puy D. J., & Telford, I. R. H. (1993). Caricaceae chapter 30. In: Flora of Australia volume 50 oceanic islands 2. Australian Government Publishing Service, Canberra, Australia, pp. 163–164.

    Google Scholar 

  • Duval, M. F., Coppens d'Eeckenbrugge, G., Ferreira, F. R., Bianchetti, L. D. B., & Cabral, J. R. S. (1995). First results from joint EMBRAPA-CIRAD Ananas germplasm collecting in Brazil and French Guyana. In II International Pineapple Symposium (Vol. 425, pp. 137–144).

    Google Scholar 

  • Duval, M. F., Noyer, J. L., Hamon, P., & Coppens d’Eeckenbrugge, G. (1998). Study of variability in the genera Ananas and Pseudananas using RFLP. Acta Horticulturae, 529, 23–131.

    Google Scholar 

  • Duval, M. F., Coppens d’Eeckenbrugge, G., Fontaine, A., & Horry, J. P. (2001). Ornamental pineapple: Perspective from clonal and hybrid breeding. Pineapple News, 8, 12.

    Google Scholar 

  • Duval, M. F., Buso, G. S. C., Ferreira, F. R., Noyer, J. L., Coppens d’Eeckenbrugge, G., Hamon, P., & Ferreira, M. E. (2003). Relationship site variation. Genome NRC Research Press, 46, 990–1004.

    Google Scholar 

  • Edward A. E., Fredy H. B., & Jonathan, H. C. (2015). An overview of US papaya production, trade and consumption. Website http://edis.ifas.ufl.edu

  • Eibach, R., Diehl, H., & Alleweldt, G. (1989). Investigations on the heritability of resistance to Oidium tuckeri, Plasmopara viticola and Botrytis cinerea in grapes. Vitis, 28(4), 209–228.

    Google Scholar 

  • El-Kassas, S. E., El-Sese, A. M., El-Salhy, A. M., & Abadía, A. A. (1998). Bearing habits in some pomegranate cultivars. Assiut Journal of Agricultural Science, 29, 147–162.

    Google Scholar 

  • FAO. (2010). FAO STAT. http://faostat.fao.org

  • FAO. (2011). FAOSTAT. Food and Agriculture Organization of the United Nations Database. http://www.apps.fao.org. Accessed Dec 2011.

  • Facciola, S. (1990). CORNUCOPIA: A source book of edible plants. Kampong Publications, vista California.

    Google Scholar 

  • Fadavi, A., Barzegar, M., & Azizi, M. H. (2006). Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. Journal of Food Composition and Analysis, 19(6–7), 676–680. https://doi.org/10.1016/j.jfca.2004.09.002.

    Article  CAS  Google Scholar 

  • Feechan, A., Anderson, C., Torregrosa, L., Jermakow, A., Mestre, P., Wiedemann-Merdinoglu, S., Merdinoglu, D., Walker, A. R., Cadle-Davidson, L., Reisch, B., Aubourg, S., Bentahar, N., Shrestha, B., Bouquet, A., Adam-Blondon, A., Thomas, M. R., & Dry, I. B. (2013). Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. The Plant Journal, 76(4), 661–674. https://doi.org/10.1111/tpj.12327.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Y. Z., Song, M. T., & Han, D. B. (2006). The general status of pomegranate germplasm resources in China. China Fruits, 4, 57–58.

    Google Scholar 

  • Ferreira, F. R. (2002). Genebank network of tropical and subtropical fruits in Brazil. Crop Breeding and Applied Biotechnology, 2(4), 609–612.

    Article  Google Scholar 

  • Firoozabady, E., & Olmo, H. P. (1982). Heritability of resistance to root-knot nematode (Meloidogyne incognita acrita Chit.) in Vitis vinifera x Vitis rotundifolia hybrid derivatives. Vitis, 21, 136–144.

    Google Scholar 

  • Fitch, M. M. M. (2005). CARICA PAPAYA PAPAYA chapter 6.1 In: RE Lit zed biotechnology of fruit and nut crops. CABI Publishing, pp. 174–207.

    Google Scholar 

  • Forni, G. (2012). The origin of “Old World” viticulture. Vitis, 51, 27–38.

    Google Scholar 

  • Frison, E. A., & Servinsky, J. (1995). Directory of European Institution holding crop genetic resources collections (Vol. 1, 4th edn.). IPGRI. www.ecpgr.cgiar.org/publications/directories/direct95.htm

  • Ganeshan, S., & Rajasekaran, P. E. (1995). Genetic conservation through pollen storage in ornamental plants, in advanced in horticulture volume 12- Ornamental plants (K. L. Chadha & Bhattacharjee) (pp. 87–107). New Delhi: Malhotra Publishing House.

    Google Scholar 

  • Gardiman, M., & Bavaresco, L. (2015). The Vitis germplasm repository at the CRA-VIT, Conegliano (Italy): conservation, characterization and valorisation of grapevine genetic resources. XI International Conference on Grapevine Breeding and Genetics, 1082, 239–244.

    Google Scholar 

  • Garrett, A., (1995). The pollination biology of papaw (Carica papaya L.) in Central.

    Google Scholar 

  • Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6(1), 391–415. https://doi.org/10.3390/nu6010391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez- Arnao, M., Marquez- Ravelo, M., Urra- Villavicencio, C., Martinez- Montero, M., & Engelmann, F. (1998). Cryopreservation of pineapple (Ananas comosus) apices. CryoLetters, 19, 375–382.

    CAS  Google Scholar 

  • Graham, S. A., Hall, J., Sytsma, K., & Shi, S. H. (2005). Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. International Journal of Plant Sciences, 166(6), 995–1017. https://doi.org/10.1086/432631.

    Article  CAS  Google Scholar 

  • Grassi, F., Labra, M., Imazio, S., Spada, A., Sgorbati, S., Scienza, A., & Sala, F. (2003). Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theoretical and Applied Genetics, 107(7), 1315–1320.

    Article  CAS  PubMed  Google Scholar 

  • Hamdan, N., Samad, A. A., Hidayat, T., & Salleh, F. M. (2013). Phylogenetic Analysis of Eight Malaysian Pineapple Cultivars using a Chloroplastic Marker. Jurnal Teknologi (Science & Engineering), 64(2), 29–33.

    Google Scholar 

  • Hancock, J. F. (2004). Plant evolution and the origin of crop species. (2nd (Vol. 313). Cambridge, MA: CABI Publishing.

    Google Scholar 

  • Harlan, J. R. (1975). Crops and man. American Society of Agronomy, Madison: American Society for Agronomy.

    Google Scholar 

  • Harlan, J. R. (1992). Crops and man (2nd ed., pp. 25–98). Madison: American Society of Agronomy.

    Google Scholar 

  • Hassanen, S. A., Abido, A. I. A., Aly, M. A. M., & Rayan, G. A. (2013). In vitro preservation of grapevine (Vitis vinifera L.) ‘Muscat of Alexandria’ and ‘Black Monukka’cultivars as genetic resource. African Journal of Basic and Applied Sciences, 5(2), 55–63.

    Google Scholar 

  • He, P., & Niu, L. (1989). Studies on the resistance of wild Vitis species native to China to winter hardiness. Acta Horticultural Sinica, 16, 81–88.

    Google Scholar 

  • He, P., & Wang, G. (1986). Studies on the resistance of wild Vitis species native to China to downy mildew. Acta Horticultural Sinica, 13, 17–24.

    Google Scholar 

  • Hidayat, T. (2012). Leaf and fruit morphology of Malaysian pineapple cultivar (Unpublished Manuscript).

    Google Scholar 

  • Holland, D., Hatib, K., & Bar-Ya'akov, I. (2009). Pomegranate: Botany, horticulture, breeding. Horticultural Reviews, 35, 127–191.

    Article  Google Scholar 

  • Horovitz, S., & Jiménez, H. (1967). Cruzamientos interspecificos e intergenericos en Caricaceae y sus implicaciones fitotecnicas. Agronomia Tropical, 17, 323–343.

    Google Scholar 

  • Huang, Y. L., & Shi, S. H. (2002). Phylogenetics of Lythraceae sensu lato: a preliminary analysis based on chloroplast rbc L gene, psa A-ycf 3 spacer, and nuclear rDNA internal transcribed spacer (ITS) sequences. International Journal of Plant Sciences, 163(2), 215–225. https://doi.org/10.1086/338392.

    Article  CAS  Google Scholar 

  • IBPGR. (1986). Punica granatum (pomegranate). In Genetic Resources of Tropical, Sub-Tropical Fruits and Nuts (Excluding Musa) (pp. 97–100). Rome: International Board for Plant Genetic Resources.

    Google Scholar 

  • IPGRI. (2001). Regional report CWANA 1999–2000. Rome: International Plant Genetic Resources Institute, 1st September 2006. www.ipgri.cgiar.org/publications/pdf/821.pdf

  • Isidrón, M., Rosales, Y., Pifferrer, A., Cisneros, A., Benega, R., & Carvajal, C. (2003). Caracterización del germoplasma de piña colectado en Cuba mediante prospección nacional: I. Localización, diversidad genética y situación actual. Cultivos tropicales, (1), 24.

    Google Scholar 

  • Jabco, J. P., Nesbitt, W. B., & Werner, D. J. (1985). Resistance of various classes of grapes to the bunch and muscadine grape forms of black rot. Journal of the American Society for Horticultural Science (USA), 110, 762–765.

    Google Scholar 

  • Jalikop, S. H., & Kumar, P. S. (1990). Use of a gene marker to study the mode of pollination in pomegranate (Punica granatum L.). Journal of Horticultural Science, 65(2), 221–223. https://doi.org/10.1080/00221589.1990.11516050.

    Article  Google Scholar 

  • Jian, L., Lee, A., & Binns, C. (2007). Tea and lycopene protect against prostate cancer. Asia Pacific Journal of Clinical Nutrition, 16(Suppl 1), 453–457.

    CAS  PubMed  Google Scholar 

  • Kim, M. S., Moore, P. H., Zee, F., Fitch, M. M. M., Steiger, D. L., Manshardt, R. M., Paull, R. E., Drew, R. A., Sekioka, T., & Ming, R. (2002). Genetic diversity of Carica papaya as revealed by AFLP markers. Genome, 45(3), 503–512.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, L. S. S., & Srinivasan, V. K. (1944). Chromosome number of Carica dodecaphylla Vell. Fl. Flum. Current Science, 13, 15.

    Google Scholar 

  • Langley, P. (2000). Why a pomegranate? British Medical Journal, 321(7269), 1153–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufer, B. (1929). The American plant migration. The Scientific Monthly, 28(3), 239–251.

    Google Scholar 

  • Leal, F., & Antoni, M. G. (1981). Especies del genero Ananas: origen y distribucion geografica. Revista de la Facultad de Agronomia( Maracay), 29, 5–12.

    Google Scholar 

  • Leal, F., & Coppens d’Eeckenbrugge, G. (1996). Pineapple. In J. Janick & J. N. Moore (Eds.), Fruit breeding (pp. 565–606). New York: Wiley.

    Google Scholar 

  • Leão, P. C. D. S., Cruz, C. D., & Motoike, S. Y. (2011). Genetic diversity of table grape based on morphoagronomic traits. Scientia Agricola, 68(1), 42–49.

    Article  Google Scholar 

  • Levadoux, L., Boubals, D., & Rives, M. (1962). The genus Vitis and its species. Ann Amélior Plantes, 12, 19–44.

    Google Scholar 

  • Levin, G. M. (1994). Pomegranate (Punica granatum) plant genetic resources in Turkmenistan. Bulletin des Ressources Phytogenetiques (IPGRI/FAO), Noticiario de Recursos Fitogeneticos (IPGRI/FAO).

    Google Scholar 

  • Levin, G. M. (1995a). Aspects of pomegranate culture in Turkmenistan. Bulletin des Ressources Phytogenetiques (IPGRI/FAO); Noticiario de Recursos Fitogeneticos (IPGRI/FAO).

    Google Scholar 

  • Levin, G. M. (1995b). Genofund of pomegranate in Turkmenistan. Problems of Desert Development, 3, 84–89.

    Google Scholar 

  • Levin, G. M. (2006a). Pomegranate. College Station: Texas A & M Press.

    Google Scholar 

  • Levin, G. M. (2006b). Pomegranate (1st edn., pp 1–129). East Libra Drive Tempe: Third Millennium Publishing.

    Google Scholar 

  • Lindley, J. J. (1827). Billbergia. Botanical Register, 13, 1068.

    Google Scholar 

  • Linnaeus, C. (1753). Species plantarum (Vol. 1, p. 472). Berolini: Impensis GC Nauk.

    Google Scholar 

  • Luther, H. E., & Sieff, E. (1998). An Alphabetical List of Bromeliad Bionomials (6th ed., p. 138). Newberg: The Biomeliad Society. http://www.selby.org/research/bic/lino98.htm.

    Google Scholar 

  • Mahattanatawee, K., Manthey, J. A., Luzio, G., Talcott, S. T., Goodner, K., & Baldwin, E. A. (2006). Total antioxidant activity and fiber content of select Florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 54, 7355–7363.

    Article  CAS  PubMed  Google Scholar 

  • Malézieux, E., Bartholomew, D. P., Bartholomew, D. P., Paul, R., & Rohrbach, K. G. (2003). The pineapple: Botany, production and uses. Boston: CABI Publishing Honolulu.

    Google Scholar 

  • Manshardt, R. M., & Zee, F. T. P. (1994). Papaya germplasm and breeding in Hawaii. Fruit Varieties Journal, 48, 146–152.

    Google Scholar 

  • Manshradt, R. M., & Moore, P. H. (2003). Natural history of papaya and caricaceae. Abstract No 792 in plant biology 2003. In: Proceedings of American society of plant biologists meeting held 25–30 July 2003, Honululu, USA.

    Google Scholar 

  • Mars, M. (1994). La culture du granadier (Punica granatum L.) et du Figuier (Ficus carica L.) en Tunisie. First Meeting of the CIHEAM Cooperative Research Network on Underutilized Fruit Trees. Zaragoza, Spain. pp. 76–83.

    Google Scholar 

  • Mars, M. (2000). Pomegranate plant material: Genetic resources and breeding, a review. Options Méditerranéennes Série A, 42, 55–62.

    Google Scholar 

  • Mars, M., & Marrakchi, M. (1999). Diversity of pomegranate (Punica granatum L.) germplasm in Tunisia. Genetic Resources and Crop Evolution, 46(5), 461–467.

    Article  Google Scholar 

  • Martinez, J. J., Melgarejo, P., & Martínez, F. (2000). Study of the floral morphology of the pomegranate clones: PTO8, CRO1 and ME14. Options Méditerranéennes Série A, 42, 105–113. http://om.ciheam.org/article.php?IDPDF=600259.

    Google Scholar 

  • McGovern, P. E. (1996). Vin extraordinaire. The Sciences, 36(6), 27–31.

    Article  Google Scholar 

  • McGovern, P. (2003). Ancient wine: The search for the origins of viniculture (pp. 96–122). Princeton: Princeton University Press.

    Google Scholar 

  • McGovern, P. E., Glusker, D. L., Exner, L. J., & Voigt, M. M. (1996). Neolithic resinated wine. Nature, 381, 480–481. https://doi.org/10.1038/381480a0.

    Article  CAS  Google Scholar 

  • McGrew, J. R. (1976). Screening grape seedlings for black rot resistance. Fruit Varieties Journal, 30(1), 31–32.

    Google Scholar 

  • Melgarejo, M. P., & Martinez, V. R. (1992). El Granado. Ediciones Mundi-Prensa, Madrid, S.A., p. 163.

    Google Scholar 

  • Melgarejo, P., Legua, P., Martinez, M., & Martinez, J. J. (2000). Contribution to a better knowledge of the quality of pomegranate pollen (Punica granatum L.). Options Méditerranéennes. Série A, Séminaires Méditerranéens, 42, 115–121.

    Google Scholar 

  • Mellado, M. P., Mas, J. A. L., Streitenberger, S. A., & Ortiz, P. M. (2012). Use of plant extracts as prebiotics, compositions and foods containing such extracts. U.S. Patent Appl. No. 13/428,621. http://patentscope.wipo.int/search/en/WO2011036316. Last accessed on 10.05.13.

  • Merrill, E. D. (1917). An Interpretation of Rumphius’s Herbarium Amboinense. Manila: Bureau of Science.

    Book  Google Scholar 

  • Merrill, E. D. (1954). The botany of Cook's voyages. Chronica Botanica, 14(5/6), 171–384.

    Google Scholar 

  • Mez, C. (1892). Bromeliaceae; Ananas. Martius, Flora Brasiliensis, Vol. 3(3). Reprinted 1965. Verlag von J. Cramer, Weinheim, Codicote ( Hertfordshire), Wheldon & Wesley, New York, pp. 288–294.

    Google Scholar 

  • Miller, P. (1754). Gardener’s dictionary (4th edn.). London: Henrey, Staflen and Cowan.

    Google Scholar 

  • Miller, P. (1768). Garden dictionary (8th edn.). London: Henrey, Staflen and Cowan.

    Google Scholar 

  • Mirzaev, M. M., Djavacynce, U. M., Zaurov, D. E., Goffreda, J. C., Orton, T. J., Remmers, E. G., & Funk, C. R. (2004). The Schroeder Institute in Uzbekistan: breeding and germplasm collections. HortScience, 39(5), 917–921.

    Article  Google Scholar 

  • Morren, E. (1878). Description de I’ Ananas macrodontes. Sp. Nov. Ananas a fortes epines. Belgique Horticole (Liege), 25, 140–172.

    Google Scholar 

  • Mortensen, J. A. (1981). Sources and inheritance of resistance to anthracnose in Vitis. Journal of Heredity, 72(6), 423–426.

    Article  Google Scholar 

  • Mortensen, J. A., Stover, L. H., & Balerdi, C. F. (1977). Sources of Resistance to Pierces disease in Vitis. Journal of the American Society for Horticultural Science, 102(6), 695–697.

    Google Scholar 

  • Morton, J. (1987a). Papaya. In: F. J. Morton & F. L. Miami (Eds.), Fruits of warm climates (pp. 336–346).

    Google Scholar 

  • Morton, J. F. (1987b). Punicaceae pomegranate. In C. F. Dowling (Ed.), Fruits of warm climates (pp. 352–355). Miami: Florida Flair Books.

    Google Scholar 

  • Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nakasone, H. Y., & Paull, R. E. (1998). Tropical fruits. Cab International.

    Google Scholar 

  • Nashima, K., Terakami, S., Nishitani, C., Kunihisa, M., Shoda, M., Takeuchi, M., Urasaki, N., Tarora, K., Yamamoto, T., & Katayama, H. (2015). Complete chloroplast genome sequence of pineapple (Ananas comosus). Tree Genetics & Genomes, 11(3), 60. https://doi.org/10.1007/s11295-015-0892-8.

    Article  Google Scholar 

  • Nunez, D. R., & Walker, M. J. (1989). A review of paleobotanical findings of early Vitis in the Mediterranean and on the origin of cultivated grape-vines, with special reference to new pointers to prehistoric exploitation in the Western Mediterranean. Review of Paleobotany, 6(3–4), 205–237. https://doi.org/10.1016/0034-6667(89)90033-X.

    Article  Google Scholar 

  • Ocampo, P. J., Coppens d’Eeckenbrugge, G., Risterucci, A. M., Dambier, D., & Ollitrault, P. (2005). Papaya genetic diversity assessed with microsatellite markers in germplasm from the Caribbean region. International Symposium on Papaya, 740, 93–101.

    Google Scholar 

  • Olien, W. C. (1990). The muscadine grape: botany, viticulture, history, and current industry. Hortscience, 25(7), 732–739.

    Article  Google Scholar 

  • Olmo, H. P. (1986). The potential role of (vinifera x rotundifolia) hybrids in grape variety improvement. Experientia, 42(8), 921–926.

    Article  Google Scholar 

  • Onur, C. (1983). Selection of pomegranate cultivars from Mediterranean region. Doctoral dissertation, Master’s thesis, Research and Training Center of Horticulture Crops, Ministry of Agriculture, Forestry and Village Affairs, Erdemli, Turkey.

    Google Scholar 

  • Onur, C., & Kaska, N. (1985). Akdeniz bölgesi narlarının (Punica granatum L.) seleksiyonu (Selection of Pomegranate of Mediterranean region). Turkish Journal of Agriculture and Forestry Department, 2, 9.

    Google Scholar 

  • Organization for Economic Co-operation and Development (OECD). (2005). Consensus document on the biology of papaya (Carica papaya). OECD Environment, Health and Safety Publications, Series on Harmonization of Regulatory Oversight in Biotechnology No. 33, France.

    Google Scholar 

  • Özgüven, A. I., & Yılmaz, C. (2000). Pomegranate growing in Turkey. Options Mediterraneennes, Serie A: Seminaires Mediterraneennes, 42, 41–48.

    Google Scholar 

  • Özgüven, A. I., Tatli, H., Coskun, M., & Daskan, Y. (1997). Fruit characteristics of some Mediterranean and Aegean pomegranate varieties under ecological conditions of Adana, Turkey. V Temperate Zone Fruit in the Tropics and Subtropics, 441, 345–350.

    Google Scholar 

  • Pavek, D. S., Lamboy, W. F., & Garvey, E. J. (2003). Selecting in situ conservation sites for grape genetic resources in the USA. Genetic Resources and Crop Evolution, 50(2), 165–173.

    Article  CAS  Google Scholar 

  • Pearson, R. C., & Goheen, A. C. (1988). Compendium of grape diseases. St. Paul: APS Press.

    Google Scholar 

  • Pennington, T. D. (1991). The Genera of the Sapotaceae. Richmond: Royal Botanic Gardens, Kew.

    Google Scholar 

  • Pohl, M. B. D., Pope, K. O., Jones, J. G., Jacob, J. S., Piperno, D. R., deFrance, S. D., Lentz, D. L., Gifford, J. A., Danforth, M. E., & Josserand, J. K. (1996). Early agriculture in the Maya lowlands. Latin American Antiquity, 7, 355–372.

    Article  Google Scholar 

  • Pruthi, J. S., & Saxena, A. K. (1984). Studies on Anardana (dried pomegranate seeds). Journal of Food Science and Technology, 21, 296–299.

    CAS  Google Scholar 

  • Purohit, S. D., & Singhvi, A. (1998). Micropropagation of Achras sapota through enhanced axillary branching. Scientia Horticulturae, 76(3–4), 219–229.

    Article  CAS  Google Scholar 

  • Purseglove, J. W. (1968). Tropical crops – Dicotyledons (pp. 45–51). London: Longman.

    Google Scholar 

  • Rahimi, H. R., Arastoo, M., & Ostad, S. N. (2012). A comprehensive review of Punica granatum (pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iranian Journal of Pharmaceutical Research: IJPR, 11(2), 385–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana, J. C., Pradheep, K., & Verma, V. D. (2007). Naturally occurring wild relatives of temperate fruits in Western Himalayan region of India: an analysis. Biodiversity and Conservation, 16(14), 3963–3991. https://doi.org/10.1007/s10531-007-9201-7.

    Google Scholar 

  • Rohrbach, K. G., Leal, F., & d’Eeckenbrugge, G. C. (2002). History, distribution and world production. In The pineapple: Botany, production and uses (pp. 1–12). Honolulu: CABI.

    Google Scholar 

  • Romeijn-Peeters. (2004) Biodiversity of the genus Vasconcellea (Caricaceae) in Ecuador: A morphological approach. PhD dissertation, Faculty of Sciences, Ghent University (UGent), Ghent, Belgium.

    Google Scholar 

  • Rozanov, B. S. (1963). Intraspecific classification of Punica granatum. From: REF ZH BIOL, 1964, No. 23V180. (Translation). Izvestiya Akademii Nauk Tadzhikskoi SSR Otd Biol Nauk, 2, 35–38.

    Google Scholar 

  • Sastrapradja, S. (1975, March 20). Tropical fruit germplasm in South East Asia. In Symposium on South East Asian Plant Genetic Resources, Bogor (Indonesia).

    Google Scholar 

  • Shi, S., Huang, Y., Tan, F., He, X., & Boufford, D. E. (2000). Phylogenetic analysis of the Sonneratiaceae and its relationship to Lythraceae based on ITS sequences of nrDNA. Journal of Plant Research, 113(3), 253–258. https://doi.org/10.1007/PL00013926.

    Article  CAS  Google Scholar 

  • Shilkina, I. A. (1973). K anatomii drevesiny roda Punica L.(On the xylem anatomy of the genus Punica). Botanicheskii Zhurnal, 58(11), 1628–1630.

    Google Scholar 

  • Shulman, Y., Fainberstein, L., & Lavee, S. (1984). Pomegranate fruit development and maturation. Journal of Horticultural Science, 59(2), 265–274.

    Article  Google Scholar 

  • Singh, R. N. (1964). Papaya breeding: A review. Indian Journal of Horticulture, 21, 148–154.

    Google Scholar 

  • Soejima, A., & Wen, J. (2006). Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. American Journal of Botany, 93(2), 278–287.

    Article  CAS  PubMed  Google Scholar 

  • Still, D. W. (2006). Pomegranates: A botanical prospective. In D. Heber, R. N. Schulman, & N. P. Seeram (Eds.), Pomegranates: Ancient roots to modern medicine (pp. 199–209). Boca Raton: CRC Press/Taylor and Francis Group.

    Google Scholar 

  • Storey, W. B. (1938). Segregations of sex types in solo papaya and their application to the selection of seed. Proceedings of the American Society of Horticultural Science, 35, 83–85.

    Google Scholar 

  • Storey. (1976). Papaya. In N. W. Simmonds (Ed.), Evolution of crop plants (pp. 21–24). New York: Longman Inc.

    Google Scholar 

  • Storey, W. B., (1985) Carica papaya. In: A. H. Halevy (Ed.), CRC handbook of flowering (Vol. II). Boca Raton: CRC Press Inc.

    Google Scholar 

  • Stover, L. H. (1960). Blue Lake a new bunch grape for Florida Home Gardens. Blue Lake a new bunch grape for Florida Home Gardens. pp. 10.

    Google Scholar 

  • Stover, E. D., & Mercure, E. W. (2007). The pomegranate: a new look at the fruit of paradise. HortScience, 42(5), 1088–1092.

    Article  Google Scholar 

  • Stover, E. D., Aradhya, M., Yang, J., Bautista, J., & Dangl, G. S. (2009). Investigations into the origin of ‘Norton’grape using SSR markers. In Proceedings of the... annual meeting of the Florida State Horticultural Society.

    Google Scholar 

  • Sugimoto, A., Yamaguchi, I., Matsuaka, M., Nakagawa, H., Kato, S., & Nakano, H. (1991). In vitro conservation of pineapple genetic resources. Research Highlights, Tropical Agricultural Center, pp. 14–16.

    Google Scholar 

  • Swingle, C. F. (1947). The Peruvian cooking papaya, Carica-monoica, a promising new fruit and vegetable for the united-states corn belt. Proceedings of the American Society for Horticultural Science, 49(June), 137–138. 701 north saint asaph street, alexandria, va 22314–1998: amer soc horticultural science.

    Google Scholar 

  • Tehrim, S., & Sajid, G. M. (2011). In vitro establishment, conservation and its implications for grape germplasm biodiversity. Romanian Biotechnological Letters, 16(6), 6781–6789.

    CAS  Google Scholar 

  • The Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.

    Article  Google Scholar 

  • Thongtham, C. (1986). Germplasm collection and conservation of pomegranate in Thailand. Newsletter-Regional Committee for Southeast Asia (IBPGR).

    Google Scholar 

  • USDA. (2007). United States Department of Agriculture, ARS National Clonal Germplasm Repository, University of California, Davis Repository Inventory of available accessions of Punica granatum.

    Google Scholar 

  • Van Droogenbroeck, B., Breyne, P., Goetghebeur, P., Romeijn-Peeters, E., Kyndt, T., & Gheysen, G. (2002). AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theoretical and Applied Genetics, 105, 2876–2297.

    Google Scholar 

  • Verma, N., Mohanty, A., & Lal, A. (2010). Pomegranate genetic resources and germplasm conservation: a review. Fruit, Vegetable and Cereal Science and Biotechnology, 4, 120–125.

    Google Scholar 

  • Villegas, V. N. (1997). Carica papaya L. In E. W. M. Verheij & R. E. Coronel (Eds.), Plant resources of South East Asia: Edible fruits and nuts (Vol. 2). Bogor: PROSEA Foundation.

    Google Scholar 

  • Wan, Y., Schwaninger, H., Li, D., Simon, C. J., Wang, Y., & He, P. (2008). The eco-geographic distribution of wild grape germplasm in China. Vitis, 47(2), 77–80.

    Google Scholar 

  • Wang, Y., & He, P. (1987). Studies on the resistance of wild Vitis species native to China to anthracnose. Journal of Fruit Science, 4(4), 1–8.

    Google Scholar 

  • Watson, L., & Dallwitz, M. J., (1992). The families of flowering plants: Descriptions, illustrations, identification, and information retrieval. http://www.delta-intkey.com/angio/www/punicace.htm. Last accessed 10.05.13.

    Google Scholar 

  • Yang, R. P., Long, W. H., Zhang, H., Xu, B., & Li, W. X. (2007). RAPD analysis of 25 Punica granatum germplasm resources collected in Yunnan province. Journal of Fruit Science, 2, 226–229.

    Google Scholar 

  • Yezhov, V. N., Smykov, A. V., Smykov, V. K., Khokhlov, S. Y., Zaurov, D. E., Mehlenbacher, S. A., Molnar, T. J., Goffreda, J. C., & Funk, C. R. (2005). Genetic resources of temperate and subtropical fruit and nut species at the Nikita Botanical Gardens. HortScience, 40(1), 5–9.

    Article  Google Scholar 

  • Yogeesha, H. S., Bhanuprakash, K., & Naik, L. B. (2008). Seed storability in three varieties of papaya in relation to seed moisture, packaging material and storage temperature. Seed Science & Technology, 36, 721–729.

    Article  Google Scholar 

  • Zamani, Z., Sarkhosh, A., Fatahi, R., & Ebadi, A. (2007). Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. The Journal of Horticultural Science and Biotechnology, 82(1), 11–18. https://doi.org/10.1080/14620316.2007.11512192.

    Article  CAS  Google Scholar 

  • Zee, E. T., & Munekata, M. (1992). In vitro storage of pineapple (Ananas spp.) germplasm. HortScience, 16, 495.

    Google Scholar 

  • Zhang, S., Li, L., Cui, Y., Luo, L., Li, Y., Zhou, P., & Sun, B. (2017). Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chemistry, 219, 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of fruit growing in the Old World. Science, 187(4174), 319–327. https://doi.org/10.1126/science.187.4174.319.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linta Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vincent, L., Anushma, P.L., Vasugi, C., Rekha, A., Shiva, B. (2019). Genetic Resources of Tropical Fruits. In: Rajasekharan, P., Rao, V. (eds) Conservation and Utilization of Horticultural Genetic Resources. Springer, Singapore. https://doi.org/10.1007/978-981-13-3669-0_4

Download citation

Publish with us

Policies and ethics