Skip to main content

Microbial Fuel Cell (MFC): An Innovative Technology for Wastewater Treatment and Power Generation

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

Microbial fuel cells (MFCs) have been nominated as new alternatives and novel opportunities which are able to convert biodegradable organic matters (as substrates) into green electricity with the aim of different types of active microorganisms as active biocatalysts. In terms of configurations, one-chambered MFCs (OC-MFCs), dual-chambered MFCs (DC-MFCs), tubular, H-type, upflow MFCs, and stacked ones would be introduced each for specific objectives. Basically, MFC configuration consists of a biological anode and an abiotic cathode chamber separated by a proton exchange membrane. Direct production of electricity out of substrates, enabling to be operated efficiently at an ambient temperature, and expanding the diversity of fuels used as energy requirements are some of the most praiseworthy advantages of MFCs. Due to electron and proton release resulted by oxidized substrates in anode compartment, sufficient information about electron transfer mechanisms of microorganisms is essential to reach raising amount of energy produced by an MFC system and to find out the theory about their operation. In the 1980s, scientists have figured out that adding some electron mediators causes an incredible enhancement in power output and current density of mentioned technology. By this demonstration, the mediator acts as a movable agent which transports electrons between electrode and bacteria in anode part. Moreover, the most useful applications of MFCs can be classified into four significant categories. They have the ability to be used for electricity production, generation of biological hydrogen, and wastewater treatment (WWT) plants. Besides, MFCs was used as power generator for sensors and biosensors or serve as biosensors themselves. Hence, use of MFCs in water quality improvement which is related to WWT has attracted many scientists all over the world over recent years. Consequently, by using these novel technologies, online monitoring of various parameters related to water quality such as biological oxygen demand, toxicity, and total organic carbon is achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006a) Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15

    Article  CAS  Google Scholar 

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006b) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  Google Scholar 

  • Asghary M, Raoof JB, Rahimnejad M, Ojani R (2016) A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell. Biosens Bioelectron 82:173–176

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Bettin C (2006) Applicability and feasibility of incorporating microbial fuel cell technology into implantable biomedical devices. College of Engineering, 122 Hitchcock Hall, The Ohio University. https://kb.osu.edu/bitstream/handle/1811/6443/bettinthesisPDF.pdf;sequence=1

  • Bezerra CW, Zhang L, Lee K, Liu H, Marques AL, Marques EP, Wang H, Zhang J (2008) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  • Bullen RA, Arnot T, Lakeman J, Walsh F (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    Article  CAS  Google Scholar 

  • Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79:379–388

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006a) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006b) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006c) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  Google Scholar 

  • Chouler J, Di Lorenzo M (2015) Water quality monitoring in developing countries; can microbial fuel cells be the answer? Biosensors 5:450–470

    Article  CAS  Google Scholar 

  • Dai C, Choi S (2013) Technology and applications of microbial biosensor. Open J Appl Biosen 2:83–93

    Article  CAS  Google Scholar 

  • Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357

    Article  CAS  Google Scholar 

  • Daud WRW, Najafpour G, Rahimnejad M (2011) Clean energy for tomorrow: towards zero emission and carbon free future: a review. Iran J Energy Environ 2:262–273

    Google Scholar 

  • Debabov V (2008) Electricity from microorganisms. Microbiology 77:123

    Article  CAS  Google Scholar 

  • Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195:1130–1135

    Article  CAS  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  • Esmaeili C, Ghasemi M, Heng LY, Hassan SH, Abdi MM, Daud WRW, Ilbeygi H, Ismail AF (2014) Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells. Carbohydr Polym 114:253–259

    Article  CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  CAS  Google Scholar 

  • Grote M (2010) Surfaces of action. Cells and membranes in electrochemistry and the life sciences. Stud Hist Phil Biol Biomed Sci 41:183–193

    Article  Google Scholar 

  • Guo Q, Furukawa K, Sopher BL, Pham DG, Xie J, Robinson N, Martin GM, Mattson MP (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid β-peptide. Neuroreport 8:379–383

    Article  CAS  Google Scholar 

  • Habermann W, Pommer E (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133

    Article  CAS  Google Scholar 

  • Ivanov I, Vidaković-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3:803–846

    Article  CAS  Google Scholar 

  • Izadi P, Rahimnejad M (2013) Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell. Biofuel Res J 1:34–38

    Article  Google Scholar 

  • Jafary T, Ghoreyshi AA, Najafpour GD, Fatemi S, Rahimnejad M (2013) Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. Int J Energy Res 37:1539–1549

    Article  CAS  Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 39:1007–1012

    Article  CAS  Google Scholar 

  • Jong BC, Kim BH, Chang IS, Liew PWY, Choo YF, Kang GS (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40:6449–6454

    Article  CAS  Google Scholar 

  • Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Cheol Gil G, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  CAS  Google Scholar 

  • Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30

    Article  CAS  Google Scholar 

  • Kim JR, Cheng S, Oh SE, Logan BE (2007a) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  CAS  Google Scholar 

  • Kim JR, Jung SH, Regan JM, Logan BE (2007b) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–2577

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007c) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485

    Article  CAS  Google Scholar 

  • Kim JR, Premier GC, Hawkes FR, Rodríguez J, Dinsdale RM, Guwy AJ (2010) Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour Technol 101:1190–1198

    Article  CAS  Google Scholar 

  • Kumlanghan A, Liu J, Thavarungkul P, Kanatharana P, Mattiasson B (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944

    Article  CAS  Google Scholar 

  • Lee K, Zhang J, Lui H, Hui R, Shi Z, Zhang J (2009) Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochim Acta 54:4704–4711

    Article  CAS  Google Scholar 

  • Leech D, Kavanagh P, Schuhmann W (2012) Enzymatic fuel cells: recent progress. Electrochim Acta 84:223–234

    Article  CAS  Google Scholar 

  • Lefebvre O, Uzabiaga A, Chang IS, Kim BH, Ng HY (2011) Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration. Appl Microbiol Biotechnol 89:259–270

    Article  CAS  Google Scholar 

  • Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43:1352–1358

    Article  CAS  Google Scholar 

  • Li C, Venkatesan R, Bian T (2010) Wireless communications and networking conference (WCNC), IEEE, pp 1–6

    Google Scholar 

  • Li WW, Sheng GP, Liu XW, Yu HQ (2011) Recent advances in the separators for microbial fuel cells. Bioresour Technol 102:244–252

    Article  CAS  Google Scholar 

  • Lithgow A, Romero L, Sanchez I, Souto F, Vega C (1986) Journal of chemical research. Synopses 178–179

    Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  Google Scholar 

  • Liu H, Hu H, Chignell J, Fan Y (2010) Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1:129–142

    Article  Google Scholar 

  • Logan BE (2004) Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol 38:160–167

    Article  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3:27–35

    Article  CAS  Google Scholar 

  • Min B, Cheng S, Logan BE (2005) Thermodynamic analysis of a single chamber microbial fuel cell. Water Res 39:1675–1686

    Article  CAS  Google Scholar 

  • Moon H, Chang IS, Jang JK, Kim KS, Lee J, Lovitt RW, Kim BH (2005) On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J Microbiol Biotechnol 15:192–196

    CAS  Google Scholar 

  • Nevin KP, Richter H, Covalla S, Johnson J, Woodard T, Orloff A, Jia H, Zhang M, Lovley D (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514

    Article  CAS  Google Scholar 

  • Oh S, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682

    Article  CAS  Google Scholar 

  • Orta SV, Werner D, Varia J, Mgana S (2017) Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality. Water Res 117:9–17

    Article  CAS  Google Scholar 

  • Palmer I, Seymour CM, Dams RA (1995) Application of fuel cells to power generation systems. Google Patents

    Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  • Park D, Zeikus J (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59:58–61

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  CAS  Google Scholar 

  • Park D, Laivenieks M, Guettler M, Jain M, Zeikus J (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917

    CAS  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27:168–178

    Article  CAS  Google Scholar 

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82

    Article  CAS  Google Scholar 

  • Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M (2006) Microbial fuel cells for sulfide removal Environmental science. Technology 40:5218–5224

    Article  CAS  Google Scholar 

  • Rahimnejad M, Najafpour GA (2018) Microbial fuel cells: a new source of power. Biochemical Engineering and Biotechnology. https://www.researchgate.net/profile/Ghasem_Najafpour/publication/283350025_Microbial_fuel_Cell/links/5637b4c208ae78d01d394e35/Microbial-fuel-Cell.pdf. https://doi.org/10.1016/B978-0-444-63357-6.00018-3

    Chapter  Google Scholar 

  • Rahimnejad M, Mokhtarian N, Najafpour G, Daud W, Ghoreyshi A (2009) Low voltage power generation in a biofuel cell using anaerobic cultures. World Appl Sci J 6:1585–1588

    CAS  Google Scholar 

  • Rahimnejad M, Bakeri G, Najafpour G, Ghasemi M, Oh SE (2014) A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res J 1:7–15

    Article  CAS  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54:745–756

    Article  Google Scholar 

  • Ramanavicius A, Ramanaviciene A (2009) Hemoproteins in design of biofuel cells. Fuel Cells 9:25–36

    Article  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694

    Article  CAS  Google Scholar 

  • Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34:3–12

    Article  CAS  Google Scholar 

  • Rosenbaum M, Zhao F, Schröder U, Scholz F (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chem Int Ed 45:6658–6661

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    Article  CAS  Google Scholar 

  • Selman J (1993) Research, development, and demonstration of molten carbonate fuel cell systems. In: Fuel cell systems. Springer, Boston, pp 345–463

    Chapter  Google Scholar 

  • Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  • Stein NE, Hamelers HV, Buisman CN (2010) Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 78:87–91

    Article  CAS  Google Scholar 

  • Sun M, Sheng GP, Zhang L, Xia CR, Mu ZX, Liu XW, Wang HL, Yu HQ, Qi R, Yu T (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100

    Article  CAS  Google Scholar 

  • Sun JZ, Kingori GP, Si RW, Zhai DD, Liao ZH, Sun DZ, Zheng T, Yong YC (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71:801–809

    Article  CAS  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seefloor. Nat Biotechnol 20:821–825

    Article  CAS  Google Scholar 

  • Ter Heijne A, Hamelers HV, Wilde DV, Rozendal RA, Buisman CJ (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    Article  CAS  Google Scholar 

  • Wang YP, Liu XW, Li WW, Li F, Wang YK, Sheng GP, Zeng RJ, Yu HQ (2012) A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 98:230–235

    Article  CAS  Google Scholar 

  • Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    Article  CAS  Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  • Zhou M, Dong S (2011) Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc Chem Res 44:1232–1243

    Article  CAS  Google Scholar 

  • Zhou M, Jin T, Wu Z, Chi M, Gu T (2012) Microbial fuel cells for bioenergy and bioproducts. In: Sustainable bioenergy and bioproducts. Springer, London, pp 131–171

    Chapter  Google Scholar 

  • Zielke EA (2006) Thermodynamic analysis of a single chamber microbial fuel cell. Poster presentation, Humboldt State University

    Google Scholar 

  • Zou Y, Xiang C, Yang L, Sun LX, Xu F, Cao Z (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrog Energy 33:4856–4862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Rahimnejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahimnejad, M., Asghary, M., Fallah, M. (2020). Microbial Fuel Cell (MFC): An Innovative Technology for Wastewater Treatment and Power Generation. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_9

Download citation

Publish with us

Policies and ethics