Conversion of Glycerine into 1,2-Propanediol for Industrial Applications

  • Gustavo N. Oliveira
  • Natane C. Barbosa
  • Felipe C. Araújo
  • Pedro H. G. Souza
  • André V. H. Soares
  • Fernando C. Peixoto
  • José W. M. Carneiro
  • Fabio B. PassosEmail author


Glycerine is a by-product from biodiesel production. After transesterification using methanol, the oil from Jatropha seeds produces high amounts of stearic and palmitic methyl esters and about 10%wt. in glycerol. This chapter deals with the different aspects of the valorization of glycerine for the production of propylene glycol (1,2-PD). After introducing the subject, we evaluate the glycerol and 1,2-PD markets, particularly for pharmaceutical use. We then describe the processes of aqueous-phase hydrogenolysis (APH), aqueous-phase reforming (APR), and catalytic hydrogen transfer (CTH) applied to glycerol and describe some thermodynamics aspects and metal catalysts applied to these processes. Finally, we discuss some detailed kinetic models and application of molecular modeling to this reaction.


Biodiesel Glycerine hydrogenolysis Metal catalysts Molecular modeling 


  1. Abdelrahman OA, Heyden A, Bond JQ (2017) Microkinetic analysis of C 3–C 5 ketone hydrogenation over supported Ru catalysts. J Catal 348:59–74CrossRefGoogle Scholar
  2. ABIQUIFI (2017) Associação Brasileira de Indústria Farmoquímica e de Insumos Farmacêuticos: Mercado. Accessed 10 Mar 2018
  3. Ahlich A, Shah A (2007) Dow achieves another major milestone in its quest for sustainable chemistries. New Propylene Glycol Provides Environmental Benefits, Reliable Performance and Competitive Economics Midland, MIGoogle Scholar
  4. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst. Catal Lett 120(3–4):307–311CrossRefGoogle Scholar
  5. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378(1):11–18CrossRefGoogle Scholar
  6. ALICEWEB (2018) Sistema de Análise das Informações de Comércio Exterior – SISCOMEX – BRASIL. Portuguese. Accessed 10 Mar 2018
  7. Amada Y, Shinmi Y, Koso S et al (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Appl Catal B Environ 105(1):117–127. CrossRefGoogle Scholar
  8. ANP (2018a) Biodiesel. Accessed 27 Feb 2018
  9. ANP (2018b) Dados Estatísticos. Accessed 27 Feb 2018
  10. Antal M (1975) Hydrogen and food production from nuclear heat and municipal wastes. In: Hydrogen energy. Springer, New York, pp 331–338CrossRefGoogle Scholar
  11. Aresta M, Dibenedetto A, Nocito F et al (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A Chem 257(1–2):149–153CrossRefGoogle Scholar
  12. Auneau F, Michel C, Delbecq F et al (2011) Unravelling the mechanism of glycerol hydrogenolysis over rhodium catalyst through combined experimental–theoretical investigations. Chem Eur J 17(50):14288–14299PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energ Rev 16(5):2671–2686CrossRefGoogle Scholar
  14. Balaraju M, Rekha V, Prasad PS et al (2008) Selective hydrogenolysis of glycerol to 1,2 propanediol over Cu–ZnO catalysts. Catal Lett 126(1–2):119–124CrossRefGoogle Scholar
  15. Banu M, Sivasanker S, Sankaranarayanan T et al (2011) Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY. Catal Commun 12(7):673–677CrossRefGoogle Scholar
  16. Barbelli ML, Santori GF, Nichio NN (2012) Aqueous phase hydrogenolysis of glycerol to bio-propylene glycol over Pt–Sn catalysts. Bioresour Technol 111:500–503PubMedCrossRefPubMedCentralGoogle Scholar
  17. Barbelli ML, Mizrahi MD, Pompeo F et al (2014) EXAFS characterization of PtNi bimetallic catalyst applied to glycerol liquid-phase conversion. J Phys Chem C 118(41):23645–23653CrossRefGoogle Scholar
  18. Barrault J, Clacens J-M, Pouilloux Y (2004) Selective oligomerization of glycerol over mesoporous catalysts. Top Catal 27(1–4):137–142CrossRefGoogle Scholar
  19. Beatriz A, Araujo YKK, Lima DP (2011) Glycerol: a brief history and their application in stereoselective syntheses. Quím Nova 34(2):306–319CrossRefGoogle Scholar
  20. BILLBOARD (1995) Alternative songs. Accessed 19 Feb 2018
  21. BNDES (2018) Banco Nacional do Desenvolvimento. Brasil. Accessed 10 Mar 2018
  22. Boga DA, Oord R, Beale AM, Chung YM, Bruijnincx PC, Weckhuysen BM (2013) Highly selective bimetallic pt-cu/mg (al) o catalysts for the aqueous-phase reforming of glycerol. Chem Cat Chem 5(2):529–537Google Scholar
  23. Brandner A, Lehnert K, Bienholz A et al (2009) Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol. Top Catal 52(3):278–287CrossRefGoogle Scholar
  24. Cao Y-B, Zhang X, Fan J-M et al (2010) Synthesis of hierarchical Co micro/nanocomposites with hexagonal plate and polyhedron shapes and their catalytic activities in glycerol hydrogenolysis. Cryst Growth Des 11(2):472–479CrossRefGoogle Scholar
  25. Carrettin S, McMorn P, Johnston P et al (2002) Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun 7:696–697CrossRefGoogle Scholar
  26. Chaminand J, Djakovitch L, Gallezot P et al (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6(8):359–361CrossRefGoogle Scholar
  27. Checa M, Marinas A, Marinas JM et al (2015) Deactivation study of supported Pt catalyst on glycerol hydrogenolysis. Appl Catal A Gen 507:34–43CrossRefGoogle Scholar
  28. Chen Y, Miller DJ, Jackson JE (2007) Kinetics of aqueous-phase hydrogenation of organic acids and their mixtures over carbon supported ruthenium catalyst. Ind Eng Chem Res 46(10):3334–3340CrossRefGoogle Scholar
  29. Chiu CW (2006) Catalytic conversion of glycerol to propylene glycol: synthesis and technology assessment. Dissertation, University of Missouri – Columbia, USAGoogle Scholar
  30. Chiu CW, Dasari MA, Suppes GJ et al (2006) Dehydration of glycerol to acetol via catalytic reactive distillation. AICHE J 52(10):3543–3548CrossRefGoogle Scholar
  31. Chorkendorff I, Niemantsverdriet JW (2017) Concepts of modern catalysis and kinetics. Wiley, NewarkGoogle Scholar
  32. Clark JH, Farmer TJ, Hunt AJ et al (2015) Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int J Mol Sci 16(8):17101–17159PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cohen C, Diu B, Laloe F (1973) Quantum mechanics, vol 1. Wiley, New YorkGoogle Scholar
  34. Corma A, Huber GW, Sauvanaud L et al (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257(1):163–171CrossRefGoogle Scholar
  35. Cortright RD, Davda R, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dasari MA, Kiatsimkul P-P, Sutterlin WR et al (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 281(1–2):225–231CrossRefGoogle Scholar
  37. Davis ME, Davis RJ (2012) Fundamentals of chemical reaction engineering. Courier Corporation, NewburyportGoogle Scholar
  38. Delgado SN, Yap D, Vivier L et al (2013) Influence of the nature of the support on the catalytic properties of Pt-based catalysts for hydrogenolysis of glycerol. J Mol Catal A Chem 367:89–98CrossRefGoogle Scholar
  39. Delgado SN, Vivier L, Especel C (2014) Polyol hydrogenolysis on supported Pt catalysts: comparison between glycerol and 1, 2-propanediol. Catal Commun 43:107–111CrossRefGoogle Scholar
  40. El Doukkali M, Iriondo A, Cambra J et al (2013) Pt monometallic and bimetallic catalysts prepared by acid sol–gel method for liquid phase reforming of bioglycerol. J Mol Catal A Chem 368:125–136CrossRefGoogle Scholar
  41. El Doukkali M, Iriondo A, Cambra J et al (2014) Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production. Appl Catal A Gen 472:80–91CrossRefGoogle Scholar
  42. Feng J, Xu B (2014) Reaction mechanisms for the heterogeneous hydrogenolysis of biomass-derived glycerol to propanediols. Prog React Kinet Mech 39(1):1–15CrossRefGoogle Scholar
  43. Feng J, Zhang Y, Xiong W et al (2016) Hydrogenolysis of glycerol to 1,2-propanediol and ethylene glycol over Ru-Co/ZrO2 catalysts. Catalysts 6(4):51CrossRefGoogle Scholar
  44. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods. Gaussian, Pittsburgh Google Scholar:303Google Scholar
  45. Furikado I, Miyazawa T, Koso S et al (2007) Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen. Green Chem 9(6):582–588CrossRefGoogle Scholar
  46. Gandarias I, Arias PL, Requies J et al (2011) Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. J Catal 282(1):237–247CrossRefGoogle Scholar
  47. Gandarias I, Requies J, Arias PL et al (2012a) Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. J Catal 290:79–89CrossRefGoogle Scholar
  48. Gandarias I, Requies J, Arias PL et al (2012b) Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. J Catal 290:79–89. CrossRefGoogle Scholar
  49. Goddard SA, Cortright RD, Dumesic J (1992) Deuterium tracing studies and microkinetic analysis of ethylene hydrogenation over platinum. J Catal 137(1):186–198CrossRefGoogle Scholar
  50. Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2010) Selective hydrogenolysis of glycerol to 1, 3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Appl Catal A Gen 390(1–2):119–126CrossRefGoogle Scholar
  51. Grilc M, Likozar B, Levec J (2014) Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl Catal B Environ 150:275–287CrossRefGoogle Scholar
  52. Guo X, Li Y, Shi R, Liu Q, Zhan E, Shen W (2009) Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol. Appl Catal A Gen 371(1–2):108–113CrossRefGoogle Scholar
  53. Guo X, Li Y, Song W, Shen W (2011) Glycerol hydrogenolysis over Co catalysts derived from a layered double hydroxide precursor. Catal Lett 141(10):1458CrossRefGoogle Scholar
  54. H2O (2018) Especialidades Químicas. Supressora de Poeira. Accessed 10 Mar 2018
  55. Hirunsit P, Luadthong C, Faungnawakij K (2015) Effect of alumina hydroxylation on glycerol hydrogenolysis to 1, 2-propanediol over Cu/Al2O3: combined experiment and DFT investigation. RSC Adv 5(15):11188–11197CrossRefGoogle Scholar
  56. Holmiere S, Valentin R, Maréchal P et al (2017) Esters of oligo-(glycerol carbonate-glycerol): new biobased oligomeric surfactants. J Colloid Interf Sci 487:418–425CrossRefGoogle Scholar
  57. Huai Q, Jiang T, Cao F (2015) Glycerol hydrogenolysis over supported bimetallic Pt-Ni catalyst. Chem React Eng Technol 31(3):193–200Google Scholar
  58. Huang L, Zhu YL, Zheng HY et al (2008) Continuous production of 1, 2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions. J Chem Technol Biotechnol 83(12):1670–1675CrossRefGoogle Scholar
  59. Huber GW, Shabaker JW, Evans ST et al (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl Catal B Environ 62(3–4):226–235CrossRefGoogle Scholar
  60. Jensen F (2017) Introduction to computational chemistry. Wiley, ChichesterGoogle Scholar
  61. Jin X, Roy D, Thapa PS, Subramaniam B et al (2013) Atom economical aqueous-phase conversion (APC) of biopolyols to lactic acid, glycols, and linear alcohols using supported metal catalysts. ACS Sustain Chem Eng 1(11):1453–1462CrossRefGoogle Scholar
  62. Jin X, Subramaniam B, Chaudhari RV et al (2016) Kinetic modeling of Pt/C catalyzed aqueous phase glycerol conversion with in situ formed hydrogen. AICHE J 62(4):1162–1173CrossRefGoogle Scholar
  63. Kale S, Umbarkar S, Dongare M et al (2015) Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Appl Catal A Gen 490:10–16CrossRefGoogle Scholar
  64. Karinen R, Krause A (2006) New biocomponents from glycerol. Appl Catal A Gen 306:128–133CrossRefGoogle Scholar
  65. Keating P (1966) Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys Rev 145(2):637CrossRefGoogle Scholar
  66. Kim ND, Park JR, Park DS et al (2012) Promoter effect of Pd in CuCr2O4 catalysts on the hydrogenolysis of glycerol to 1,2-propanediol. Green Chem 14(9):2638–2646CrossRefGoogle Scholar
  67. Kolb V, Orgel LE (1996) Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate. Orig Life Evol Biosph 26(1):7–13PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kurosaka T, Maruyama H, Naribayashi I et al (2008) Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catal Commun 9(6):1360–1363CrossRefGoogle Scholar
  69. Kusunoki Y, Miyazawa T, Kunimori K et al (2005) Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal Commun 6(10):645–649CrossRefGoogle Scholar
  70. Lahr DG, Shanks BH (2003) Kinetic analysis of the hydrogenolysis of lower polyhydric alcohols: glycerol to glycols. Ind Eng Chem Res 42(22):5467–5472CrossRefGoogle Scholar
  71. Li X, Wu Q, Zhang B et al (2018) Efficient conversion of glycerol to 1, 2-propenadiol over ZnPd/ZnO-3Al catalyst: the significant influences of calcination temperature. Catal Today 302:210–216CrossRefGoogle Scholar
  72. Liu Q, Guo X, Wang T et al (2010a) Synthesis of CoNi nanowires by heterogeneous nucleation in polyol. Mater Lett 64(11):1271–1274CrossRefGoogle Scholar
  73. Liu Y, Tüysüz H, Jia C-J et al (2010b) From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chem Commun 46(8):1238–1240CrossRefGoogle Scholar
  74. Liu H, Liang S, Jiang T, Han B, Zhou Y (2012) Hydrogenolysis of glycerol to 1, 2-propanediol over Ru–Cu bimetals supported on different supports. CLEAN–Soil Air Water 40(3):318–324CrossRefGoogle Scholar
  75. Longjie L, Zhang Y, Aiqin W et al (2012) Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1,3-propanediol. Chin J Catal 33(7–8):1257–1261Google Scholar
  76. Maris EP, Ketchie WC, Murayama M et al (2007) Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J Catal 251(2):281–294CrossRefGoogle Scholar
  77. Martin A, Armbruster U, Gandarias I et al (2013) Glycerol hydrogenolysis into propanediols using in situ generated hydrogen–a critical review. Eur J Lipid Sci Technol 115(1):9–27CrossRefGoogle Scholar
  78. Matthey J (2018) Propylene glycol process. Accessed 10 Mar 2018
  79. Mauriello F, Ariga H, Musolino M et al (2015) Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Appl Catal B Environ 166:121–131CrossRefGoogle Scholar
  80. MCCB (2017) Ministério da Casa Civil do Brasil. Secretaria Especial de Agricultura Familiar e do Desenvolvimento Agrário. Progressão do biodiesel – mistura B8 é lei para 2017. Accessed 27 Feb 2018
  81. Minowa T, Zhen F, Ogi T (1998) Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids 13(1–3):253–259CrossRefGoogle Scholar
  82. Miyazawa T, Kusunoki Y, Kunimori K et al (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C+ an ion-exchange resin and its reaction mechanism. J Catal 240(2):213–221CrossRefGoogle Scholar
  83. Montassier C, Giraud D, Barbier J (1988) Polyol conversion by liquid phase heterogeneous catalysis over metals. Stud Surf Sci Catal 41:165–170CrossRefGoogle Scholar
  84. Montassier C, Menezo J, Hoang L et al (1991a) Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. J Mol Catal 70(1):99–110CrossRefGoogle Scholar
  85. Montassier C, Ménézo J, Moukolo J et al (1991b) Polyol conversions into furanic derivatives on bimetallic catalysts: Cu-Ru, Cu- Pt and Ru- Cu. J Mol Catal 70(1):65–84CrossRefGoogle Scholar
  86. Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1(2):179–190CrossRefGoogle Scholar
  87. Nakagawa Y, Shinmi Y, Koso S et al (2010) Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J Catal 272(2):191–194CrossRefGoogle Scholar
  88. Neurock M (1994) The microkinetics of heterogeneous catalysis. In: Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (eds) ACS professional reference book. American Chemical Society, Washington, DC 1993, 315 pp. Wiley Online LibraryGoogle Scholar
  89. Nilekar AU, Greeley J, Mavrikakis M (2006) A simple rule of thumb for diffusion on transition-metal surfaces. Angew Chem Int Ed Eng 45(42):7046–7049CrossRefGoogle Scholar
  90. OEC (2016) The observatory of economic complexity. Glycerol crude; glycerol waters and glycerol lyes. Accessed 10 Mar 2018
  91. Pamphile-Adrián AJ, Florez-Rodriguez PP, Passos FB (2016) Iridium catalysts for CC and CO hydrogenolysis: catalytic consequences of iridium sites. J Braz Chem Soc 27(5):958–966Google Scholar
  92. Panagiotopoulou P, Karamerou EE, Kondarides DI (2013) Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catal Today 209:91–98CrossRefGoogle Scholar
  93. Pandhare NN, Pudi SM, Mondal S et al (2017) Development of kinetic model for hydrogenolysis of glycerol over Cu/MgO catalyst in a slurry reactor. Ind Eng Chem Res 57(1):101–110CrossRefGoogle Scholar
  94. Parr R (2012) The quantum theory of molecular electronic structure. Literary Licensing, LLC, New YorkGoogle Scholar
  95. Pendem C, Gupta P, Chaudhary N et al (2012) Aqueous phase reforming of glycerol to 1, 2-propanediol over Pt-nanoparticles supported on hydrotalcite in the absence of hydrogen. Green Chem 14(11):3107–3113CrossRefGoogle Scholar
  96. Phillips J (1968) Covalent bond in crystals. I. Elements of a structural theory. Phys Rev 166(3):832CrossRefGoogle Scholar
  97. Rajkhowa T, Marin GB, Thybaut JW (2017) A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Appl Catal B Environ 205:469–480CrossRefGoogle Scholar
  98. Ravenelle RM, Copeland JR, Kim W-G, Crittenden JC, Sievers C (2011) Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal 1(5):552–561CrossRefGoogle Scholar
  99. Ravenelle RM, Copeland JR, Van Pelt AH, Crittenden JC, Sievers C (2012) Stability of Pt/γ-Al2O3 catalysts in model biomass solutions. Top Catal 55(3–4):162–174CrossRefGoogle Scholar
  100. Roy D, Subramaniam B, Chaudhari RV (2010) Aqueous phase hydrogenolysis of glycerol to 1, 2-propanediol without external hydrogen addition. Catal Today 156(1–2):31–37CrossRefGoogle Scholar
  101. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed Eng 51(11):2564–2601CrossRefGoogle Scholar
  102. Sakurai J, Napolitano J (2017) Modern quantum mechanics, vol 1, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  103. Salazar JB, Falcone DD, Pham HN et al (2014) Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru–Cu nanoparticles supported on TiO2. Appl Catal A Gen 482:137–144CrossRefGoogle Scholar
  104. Salciccioli M, Chen Y, Vlachos DG (2010) Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J Phys Chem C 114(47):20155–20166CrossRefGoogle Scholar
  105. Salciccioli M, Stamatakis M, Caratzoulas S et al (2011) A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem Eng Sci 66(19):4319–4355CrossRefGoogle Scholar
  106. SDA (1990) Glycerin: an overview. The Soap and Detergent Association, New YorkGoogle Scholar
  107. Shinmi Y, Koso S, Kubota T et al (2010) Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl Catal B Environ 94(3–4):318–326CrossRefGoogle Scholar
  108. Singh UK, Vannice MA (2001) Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts—a review. Appl Catal A Gen 213(1):1–24CrossRefGoogle Scholar
  109. Soares AV-H, Perez G, Passos FB (2016a) Alumina supported bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase reforming. Appl Catal B Environ 185:77–87CrossRefGoogle Scholar
  110. Soares AV, Salazar JB, Falcone DD et al (2016b) A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. J Mol Catal A Chem 415:27–36CrossRefGoogle Scholar
  111. Soares AVH, Atia H, Armbruster U et al (2017) Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Appl Catal A Gen 548:179–190CrossRefGoogle Scholar
  112. Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131(23):8077–8082PubMedCrossRefPubMedCentralGoogle Scholar
  113. Sun Q, Wang S, Liu H (2017) Selective hydrogenolysis of glycerol to propylene glycol on supported Pd catalysts: promoting effects of ZnO and mechanistic assessment of active PdZn alloy surfaces. ACS Catal 7(7):4265–4275CrossRefGoogle Scholar
  114. Ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. Chem Sustain Chem 4(8):1017–1034CrossRefGoogle Scholar
  115. Torres A, Roy D, Subramaniam B et al (2010) Kinetic modeling of aqueous-phase glycerol hydrogenolysis in a batch slurry reactor. Ind Eng Chem Res 49(21):10826–10835CrossRefGoogle Scholar
  116. van Ryneveld E, Mahomed AS, van Heerden PS et al (2011) Direct hydrogenolysis of highly concentrated glycerol solutions over supported Ru, Pd and Pt catalyst systems. Catal Lett 141(7):958–967CrossRefGoogle Scholar
  117. Vasiliadou E, Lemonidou A (2013) Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst. Chem Eng J 231:103–112CrossRefGoogle Scholar
  118. Vasiliadou ES, Lemonidou AA (2015) Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. WIREs Energ Environ 4(6):486–520CrossRefGoogle Scholar
  119. Vasiliadou E, Yfanti V-L, Lemonidou A (2015) One-pot tandem processing of glycerol stream to 1,2-propanediol with methanol reforming as hydrogen donor reaction. Appl Catal B Environ 163:258–266CrossRefGoogle Scholar
  120. Viana JDM, Fazzio A, Canuto S (2004) Teoria quântica de moléculas e sólidos: Simulaçao computacional. Editora Livraria da Física, São PauloGoogle Scholar
  121. Wang S, Liu H (2007) Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. Catal Lett 117(1–2):62–67CrossRefGoogle Scholar
  122. Wang S, Yin K, Zhang Y et al (2013) Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS Catal 3(9):2112–2121CrossRefGoogle Scholar
  123. Wang Y, Zhou J, Guo X (2015) Catalytic hydrogenolysis of glycerol to propanediols: a review. RSC Adv 5(91):74611–74628CrossRefGoogle Scholar
  124. Xi Y, Holladay JE, Frye JG et al (2010) A kinetic and mass transfer model for glycerol hydrogenolysis in a trickle-bed reactor. Org Process Res Dev 14(6):1304–1312CrossRefGoogle Scholar
  125. Yu D, Aihara M, Antal MJ Jr (1993) Hydrogen production by steam reforming glucose in supercritical water. Energ Fuels 7(5):574–577CrossRefGoogle Scholar
  126. Yu W, Zhao J, Ma H et al (2010) Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: promoting effect of Ce on catalytic performance. Appl Catal A Gen 383(1–2):73–78CrossRefGoogle Scholar
  127. Yuan Z, Wu P, Gao J et al (2009) Pt/solid-base: a predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution. Catal Lett 130(1–2):261–265CrossRefGoogle Scholar
  128. Yuan Z, Wang L, Wang J et al (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B Environ 101(3–4):431–440CrossRefGoogle Scholar
  129. Zhang Y, Zhao X-C, Wang Y et al (2013) Mesoporous Ti–W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol. J Mater Chem A 1(11):3724–3732CrossRefGoogle Scholar
  130. Zhou C-HC, Beltramini JN, Fan Y-X et al (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zhou Z, Li X, Zeng T et al (2010) Kinetics of hydrogenolysis of glycerol to propylene glycol over Cu-ZnO-Al2O3 catalysts. Chin J Chem Eng 18(3):384–390CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gustavo N. Oliveira
    • 1
  • Natane C. Barbosa
    • 2
  • Felipe C. Araújo
    • 2
  • Pedro H. G. Souza
    • 2
  • André V. H. Soares
    • 3
  • Fernando C. Peixoto
    • 3
  • José W. M. Carneiro
    • 1
  • Fabio B. Passos
    • 4
    Email author
  1. 1.Instituto de Química – UFFNiteróiBrazil
  2. 2.Escola de Engenharia – UFFNiteróiBrazil
  3. 3.CDUC – IFRJDuque de CaxiasBrazil
  4. 4.Laboratório de Reatores, Cinética e Catálise (RECAT), Escola de EngenhariaUniversidade Federal Fluminense (UFF)NiteróiBrazil

Personalised recommendations