Skip to main content

Metabolomics Analysis of Microalgae for the Cellular Physiology Adjustment to High CO2

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Carbon dioxide capture by microalgae may be a potential approach to reduce carbon emission from industrial plants. The high CO2 concentrations can constrain the growth of most microalgae. For the tolerant species, the metabolites were found to enhance the cellular physiology mechanisms. These cellular physiology adjustments of the high CO2 were related to signal transduction, nutrition availability, intracellular pH adjustment, and other pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baba M, Shiraiwa Y. High-CO2 response mechanisms in microalgae, advances in photosynthesis – fundamental aspects. Rijeka: InTech; 2012. p. 299–320.

    Google Scholar 

  • Badger MR, Price GD. The CO2 concentrating mechanism in cyanobactiria and microalgae. Physiol Plant. 1992;84(4):606–15.

    Article  CAS  Google Scholar 

  • Badger MR, Price GD. The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol. 1994;45(1):369–92.

    Article  CAS  Google Scholar 

  • Badger MR, Kaplan A, Berry JA. Internal inorganic carbon pool of Chlamydomonas reinhardtii Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol. 1980;66(3):407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg JM, Tymoczko JL, Gatto GJ, Stryer L. Biochemistry, ; W. H. 2015: 1053.

    Google Scholar 

  • Bernfeld P. Enzymes of starch degradation and synthesis. In: Advances in Enzymology and Related Areas of Molecular Biology, vol. 12; 2006. p. 379–428.

    Chapter  Google Scholar 

  • Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009;3:1.

    Article  Google Scholar 

  • Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I. Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell. 2012;24:1860–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol. 2011;7:518.

    Article  Google Scholar 

  • Dishisha T, Pereyra LP, Pyo S-H, Britton RA, Hatti-Kaul R. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1, 3-propanediol from glycerol. Microb Cell Factories. 2014;13:1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekblad E, Edvinsson L, Wahlestedt C, Uddman R, Håkanson R, Sundler F. Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regul Pept. 1984;8(3):225–35.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S-y, Suzuki I, Hama T, Shiraiwa Y. Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification. J Oceanogr. 2011;67:17–25.

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol. 2005;56:99–131.

    Article  CAS  PubMed  Google Scholar 

  • Hajra AK, Bishop JE. Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann N Y Acad Sci. 1982;386(1):170–82.

    Article  CAS  PubMed  Google Scholar 

  • Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, Levin LR, Buck J, Mühlschlegel FA. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot Cell. 2011;10(8):1034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S-L, Kim H-N, Jung H-H, Kim J-E, Choi D-K, Hur J-M, Lee J-Y, Song H, Song K-S, Huh T-L. Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem Biophys Res Commun. 2008;377:1253–8.

    Article  CAS  PubMed  Google Scholar 

  • Laurens LM. Summative mass analysis of algal biomass–integration of analytical procedures. Colorado: The National Renew able Energy Laboratory; 2013.

    Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc. 2006;1(1):387–96.

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Hönack D, Taylor CP. Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett. 1991;128:150–4.

    Article  PubMed  Google Scholar 

  • Mason V, White F. The digestion of bacterial mucopeptide constituents in the sheep: 1. The metabolism of 2, 6-diaminopimelic acid. J Agric Sci. 1971;77:91–8.

    Article  CAS  Google Scholar 

  • Matsuda Y, Shimada T, Sakamoto Y. Ammonium ions control gametic differentiation and dedifferentiation in Chlamydomonas reinhardtii. Plant Cell Physiol. 1992;33:909–14.

    CAS  Google Scholar 

  • Moinard C, Cynober L, de Bandt J-P. Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005;24(2):184–97.

    Article  CAS  PubMed  Google Scholar 

  • Moroney JV, Husic HD, Tolbert N. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol. 1985;79(1):177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroney J, Bartlett S, Samuelsson G. Carbonic anhydrases in plants and algae. Plant Cell Environ. 2001;24(2):141–53.

    Article  CAS  Google Scholar 

  • Packard CJ, Boag DE, Clegg R, Bedford D, Shepherd J. Effects of 1, 2-cyclohexanedione modification on the metabolism of very low density lipoprotein apolipoprotein B: potential role of receptors in intermediate density lipoprotein catabolism. J Lipid Res. 1985;26:1058–67.

    CAS  PubMed  Google Scholar 

  • Patel B, Merrett M. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta. 1986;169(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  • Ramazanov Z, Cárdenas J. Photorespiratory ammonium assimilation in chloroplasts of Chlamydomonas reinhardtii. Physiol Plant. 1994;91:495–502.

    Article  CAS  Google Scholar 

  • Rangan VS, Smith S. Fatty acid synthesis in eukaryotes. New Comprehensive Biochemistry. 2002;36:151–79.

    Article  CAS  Google Scholar 

  • Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res. 2010;106:123–34.

    Article  CAS  PubMed  Google Scholar 

  • Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardeström P, Moritz T, Samuelsson G. A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol. 2010;154:187–96.

    Google Scholar 

  • Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM, Duin S, Dmitrenok PS, Chizhov AO, Shashkov AS. Chemical structure and biological activity of a highly branched (1→ 3, 1→ 6)-β-D-glucan from Isochrysis galbana. Carbohydr Polym. 2014;111:139–48.

    Article  CAS  PubMed  Google Scholar 

  • Schnurr PJ, Espie GS, Allen DG. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol. 2013;136:337–44.

    Article  CAS  PubMed  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11(1):7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett. 2013;35:1745–52.

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A, Gorelova O, Selyakh I, Pogosyan S, Baulina O, Semenova L, Chivkunova O, Voronova E, Konyukhov I, Scherbakov P. A novel CO 2-tolerant symbiotic Desmodesmus (Chlorophyceae, Desmodesmaceae): acclimation to and performance at a high carbon dioxide level. Algal Res. 2015;11:399–410.

    Article  Google Scholar 

  • Spalding MD, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010;74:200–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starling JJ, Keppler DO. Metabolism of 2-deoxy-D-galactose in liver induces phosphate and uridylate trapping. Eur J Biochem. 1977;80:373–9.

    Article  CAS  PubMed  Google Scholar 

  • Swarnalatha G, Hegde NS, Chauhan VS, Sarada R. The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae. Algal Res. 2015;9:151–9.

    Article  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–4.

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki M, Gantar M, Aizawa K, Miyachi S. Ultrastructure of Dunaliella tertiolecta Cells Grown under Low and High CO2 Concentrations. Plant Cell Physiol. 1986;27(4):737–9.

    Google Scholar 

  • Wang Y, Duanmu D, Spalding MH. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: Inorganic carbon transport and CO2 recapture. Photosynth Res. 2011;109:115–22.

    Article  CAS  PubMed  Google Scholar 

  • Williams TG, Colman B. Quantification of the contribution of CO2, HCO3, and external carbonic anhydrase to photosynthesis at low dissolved inorganic carbon in Chlorella saccharophila. Plant Physiol. 1995;107(1):245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This chapter was modified from the paper published by our group in Journal of Algal Research, Guo Ying, Yuan Zhenhong, Xu Jingliang, Wang Zhongming, Yuan Tao, Zhou Weizheng, Xu Jin, Liang Cuiyi, Xu Huijuan, Liu Shijie, Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas, 2017, 8(5). The related contents are reused with the permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhong Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, Y., Yuan, Z. (2019). Metabolomics Analysis of Microalgae for the Cellular Physiology Adjustment to High CO2. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_18

Download citation

Publish with us

Policies and ethics