Skip to main content

Multi-feature Semi-supervised Learning Approach

  • Chapter
  • First Online:
Electronic Nose: Algorithmic Challenges

Abstract

The concerns of this chapter are threefold: first, due to that each sensor feature can be exploited in different modality, multiple feature modalities for each sensor may be extracted; second, consider that the manual labeling of artificial olfaction data in real-time detection is difficult and hardly impossible, semi-supervised learning strategy is expected to be a breakthrough and overcome the problem of insufficient labeled data in artificial olfactory system; third, in E-Nose community, classifier learning is generally independent from feature extraction, such that the recognition capability of an E-Nose is limited due to the achieved suboptimal performance. Motivated by these concerns, in this chapter, from a new machine learning perspective, we aim at proposing a multi-feature kernel semi-supervised learning framework nominated as MFKS, whose merits can be composed of three points. (1) A multi-feature joint learning with low-rank constraint is developed for exploiting the multiple feature modalities from each sensor. The relatedness of all sub-classifiers learned on multiple feature modalities is preserved by imposing a low-rank constraint on the group classifier as regularization. (2) With a manifold assumption, a Laplacian graph manifold regularization is incorporated for semi-supervised learning and overcomes the flaw of insufficient labeled data in E-Nose. (3) The feature level and classifier level in artificial olfactory system are learned simultaneously in a complete framework, such that the recognition performance of an E-Nose can be optimally achieved. Experiments on two olfaction datasets including a large-scale 16-sensor data with 36-month drift and a small-scale temperature-modulated sensor data demonstrate that the proposed approach outperforms other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B: Chem. 166–167, 320–329 (2012)

    Article  Google Scholar 

  2. M. Holmberg, F.A.M. Davide, C.D. Natale, A.D. Amico, F. Winquist, I. Lundstrӧm, Drift counteraction in odour recognition applications: lifelong calibration method. Sens. Actuators B: Chem. 42(3), 185–194 (1997)

    Article  Google Scholar 

  3. S.D. Carlo and M. Falasconi, Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges. Adv. Chem. Sensors, 305–326 (2012)

    Google Scholar 

  4. G. Fattoruso, S. De Vito, M. Pardo, F. Tortorella, G. Di Francia, A semi-supervised learning approach to artificial olfaction. Lect. Notes Electr. Eng. 109, 157–162 (2012)

    Article  Google Scholar 

  5. S. De Vito, G. Fattoruso, M. Pardo, F. Tortorella, G. Di Francia, Semi-supervised learning techniques in artificial olfaction: a novel approach to classification problems and drift counteraction. IEEE Sens. J. 12(11), (Nov 2012)

    Google Scholar 

  6. O. Chapelle, A. Zien, B. Sholkopf, Semi-Supervised Learning (MIT Press, Boston, MA, 2006)

    Book  Google Scholar 

  7. D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Schӧlkopf, Learning with Local and Global Consistency, NIPS, 321–328 (2004)

    Google Scholar 

  8. Y. Luo, D. Tao, B. Geng, C. Xu, Manifold regularized multitask learning for semi-supervised multilabel image classification. IEEE Trans. Image Process. 22(2), 523–536 (2013)

    Article  MathSciNet  Google Scholar 

  9. Y. Yang, Z. Ma, A.G. Hauptmann, N. Sebe, Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Trans. Multimedia 15(3), 661–669 (2013)

    Article  Google Scholar 

  10. S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  11. J. Tenenbaum, V. Silva, J. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)

    Article  Google Scholar 

  12. M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  13. S. Yan, D. Xu, B. Zhang, H.J. Zhang, Q. Yang, S. Lin, Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  14. T. Xia, T. Mei, Y. Zhang, Multiview spectral embedding. IEEE Trans. Syst. Man Cybern. Part B 40(6), 1438–1446 (2010)

    Article  Google Scholar 

  15. A. Ziyatdinov, S. Marco, A. Chaudry, K. Persaud, P. Caminal, A. Perera, Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B: Chem. 146(2), 460–465 (2010)

    Article  Google Scholar 

  16. S.D. Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, A. Tonda, Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation. Pattern Recognit. Lett. 32(13), 1594–1603 (2011)

    Article  Google Scholar 

  17. L.J. Dang, F. Tian, L. Zhang, C. Kadri, X. Yin, X. Peng, S. Liu, A novel classifier ensemble for recognition of multiple indoor air contaminants by an electronic nose. Sens. Actuators, A 207, 67–74 (2014)

    Article  Google Scholar 

  18. H. Liu, R. Chu, Z. Tang, Metal oxide gas sensor drift compensation using a two-dimensional classifier ensemble. Sensors 15(5), 10180–10193 (2015)

    Article  Google Scholar 

  19. Q. Liu, X. Li, M. Ye, S.S. Ge, X. Du, Drift compensation for electronic nose by semi-supervised domain adaption. IEEE Sens. J. 14(3), 657–665 (2014)

    Article  Google Scholar 

  20. L. Zhang, D. Zhang, Domain adaptation transfer extreme learning machine. Proc. Adapt. Learn. Optim. 3, 103–119 (2015)

    Article  Google Scholar 

  21. L. Zhang, D. Zhang, Domain adaptation extreme learning machines for drift compensation in E-Nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (2015)

    Article  Google Scholar 

  22. L. Martin, L. Amy, Unsupervised feature learning for electronic nose data applied to bacteria identification in blood. NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  23. Q. Liu, X. Hu, M. Ye, X. Cheng, F. Li, Gas recognition under sensor drift by using deep learning. Int. J. Intell. Syst. 30(8), 907–922 (2015)

    Article  Google Scholar 

  24. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, Y. Ma, Robust recovery of subspace structure by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  25. http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations

  26. D.A.P. Daniel, K. Thangavel, R. Manavalan, R.S.C. Boss, ELM-based ensemble classifier for gas sensor array drift dataset. Adv. Intell. Syst. Comput. 246, 89–96 (2014)

    Article  Google Scholar 

  27. G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man, Cybern. B, Cybern 42(2), 513–529 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Multi-feature Semi-supervised Learning Approach. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics